

Halbzeuge Lieferprogramm

Qualität aus eigener Entwicklung 02 – 03

Erstklassige Halbzeuge aus technischem Kunststoff

Wir sind spezialisiert auf die Fertigung und den Vertrieb von Halbzeugen aus technischen Kunststoffen mit einem jährlichen Volumen von über 7.000 Tonnen – damit zählen wir weltweit zu den führenden Herstellern. Unser Schwerpunkt liegt auf PA 6 G, einem extrem harten, leichten und langlebigen Gusspolyamid aus eigener Entwicklung, das unter der Marke LiNNOTAM als Platten, Stäbe und Rohre erhältlich ist. Ergänzt wird unser Portfolio durch ein umfangreiches Sortiment an PA 6 E, PA 66, POM-C, PET und PET-GL.

Als erfahrener Hersteller ist Licharz seit über 60 Jahren ein kompetenter Partner verschiedenster Branchen und Industrien. Wir beraten Sie umfassend beim Einsatz von Kunststoff-Halbzeugen und entwickeln gemeinsam mit Ihnen individuelle Lösungen für Ihre Anforderungen. Unsere Halbzeuge sind besonders maßhaltig, weisen geringe Restspannungen auf und lassen sich hervorragend zerspanen. Die Zahl der Produkte, die weltweit aus Halbzeugen von Licharz hergestellt werden, ist beeindruckend. Internationale Verarbeiter vertrauen seit Jahren auf unsere Halbzeuge aus technischem Kunststoff.

Inhalt

Materialübersicht	S. 04 – 05
LINNOTAM	S. 06 – 15
LINNOTAM GLIDE	S. 16 – 19
LINNOTAM GLIDE Pro T	S. 20 – 23
LINNOTAM HIPERFORMANCE	S. 24 – 29
LINNOTAM DRIVE	S. 30 – 31
PA 6 E	S. 32 – 35
PA 66 und PA 66-GF	S. 36 – 37
POM-C	S. 38 – 41
PET und PET-GL	S. 42 – 43
Bearbeitung und Nachbehandlung	S. 44 – 51
Physikalische Werkstoffrichtwerte	S. 52 – 55
Chemische Beständigkeit	S. 56 – 59

matec-30 HV

Entdecken Sie LiNNOTAM, die herausragende Produktlinie von Licharz, die wir speziell entwickelt haben, um höchste Ansprüche zu erfüllen. Unsere Gusspolyamide sind die idealen Werkstoffe für präzise und komplexe Bauteile. Mit LiNNOTAM profitieren Sie nicht nur von einer einfachen und effizienten Bearbeitung, sondern auch von einer umfassenden Vielfalt. Wir bieten Ihnen eine breite Palette an Formen, Gießgewichten und Abmessungen, damit Sie exakt das Material erhalten, das Ihre spezifischen Anforderungen erfüllt.

Materialübersicht 04 - 05

Übersicht

LINNOTAM

LiNNOTAM ist unsere Marke für hochwertiges gegossenes Polyamid 6 (PA 6 C). LiNNOTAM ist ein teilkristalliner, thermoplastischer Kunststoff, der durch Polymerisation des Rohstoffs Caprolactam entsteht. LiNNOTAM überzeugt durch hohe Festigkeit, hervorragende Verschleißbeständigkeit und sehr gute Maßhaltigkeit – ideal für den Einsatz in mechanisch stark belasteten Bauteilen.

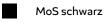
Verfügbare Formen

Platte

Rundstab

Hohlstab

Ring



Scheibe

Verfügbare Farben

blau

LINNOTAM GLIDE

LiNNOTAM GLiDE ist eine hochkristalline Modifikation von LiNNOTAM, die durch den Zusatz von schmieraktiven Additiven und Öl speziell auf den Einsatzbereich der Gleitanwendungen ausgerichtet ist. Seine hervorragenden Eigenschaften machen LiNNOTAM GLiDE zum speziellen Werkstoff für hochbeanspruchte Bauteile im Maschinen- und Anlagenbau. Gegenüber der Standardqualität lässt sich eine um 50 Prozent reduzierte Gleitreibungszahl realisieren, was zu weniger Reibungswärme und damit wesentlich höherer Belastbarkeit führt.

Verfügbare Formen

Platte

Rundstab

Verfügbare Farben

grün

natur

blau

rot

LINNOTAM GLIDE Pro T

LiNNOTAM GLiDE Pro T ist eine Weiterentwicklung unseres bewährten LiNNOTAM GLiDE und durch den Zusatz von Festschmierstoffen und speziellen Additiven insbesondere für Gleitanwendungen geeignet. Es steht für höchste Verschleißfestigkeit und lange Lebensdauer. Es ergibt sich ein Gleitreibungskoeffizient, der mit 0,15 µ außergewöhnlich niedrig ist. Zusätzlich wird die Neigung zum Stick-Slip-Effekt zuverlässig vermindert.

Verfügbare Formen

Platte

Rundstab

Hohlstab

Verfügbare Farben

grün

natur

LINNOTAM HIPERFORMANCE

LINNOTAM HIPERFORMANCE ist eine Gruppe von Hochleistungs-Polyamiden, hergestellt aus den Rohstoffen Caprolactam und Laurinlactam. Im Vergleich zu reinem LiNNOTAM weisen die Werkstoffe LiNNOTAM HiPERFORMANCE 612 und 1200 - je nach Variante – bei gleichen Gleit- und Verschleißeigenschaften eine höhere Schlag- und Stoßfestigkeit sowie geringere Neigung zur Feuchtigkeitsaufnahme auf. Zudem zeichnen sich die Werkstoffe durch ein verbessertes Kriechverhalten, höhere Elastizität und ein besseres Rückstellverhalten aus.

Verfügbare Formen

Platte

Rundstab

Hohlstab

Verfügbare Farben

rot

LINNOTAM DRIVE

LiNNOTAM DRiVE wurde speziell für die Antriebstechnik entwickelt und nutzt einen mit LiNNOTAM HiPERFORMANCE 612 oder 1200 umgossenen, gerändelten Metallkern. Nach dem Guss schrumpft das abkühlende Polymer auf den Kern auf. Dieser form- und kraftschlüssige Verbund ermöglicht eine optimale Kraftübertragung: hohe Kräfte an der Metallachse und die Vorteile des Kunststoffs, geringe Geräuschentwicklung, höhere Verschleißfestigkeit und Schlagzähigkeit am Außenmantel.

Verfügbare Formen

Rundstab mit metallischem Kern

Verfügbare Farben

LINNOTAM 06 – 07

 ρ = 1,15 g/cm³

LiNNOTAM Platten

Stärke	Toleranz	3.050 × 3	1.220	_	2.000 ×	1.220		2.0	00 × 1.	000			1.000 × 3	1.000	
											+ MoS				
in mm	in mm	kg/m			kg/m			kg/m					kg/m		
8	+0,2/+1,5			_			_	11,5	+	+	0	_			
10		17,0	+	+	16,5	+	+	13,5	+	+	+	+			
12	+0,3/+2,5	20,1	+	+	19,4	+	+	16,0	+	+	0	+			
15		24,3	+	+	24,3	+	+	20,0	+	+	0	+			
16					25,0	+	+	21,5	+	+	0	0			
18								24,5	+	+	0	0			
20		31,0	+	+	31,0	+	+	26,0	+	+	+	+			
22								29,0	+	0	0	0			
25		39,0	+	+	39,0	+	+	32,0	+	+	0	+			
30	+0,5/+3,5	47,0	+	+	47,0	+	+	38,5	+	+	+	+			
35		55,8	+	+	55,8	0	+	45,3	+	+	0	0			
40		62,0	+	+	62,0	+	+	51,0	+	+	+	+			
45		68,0	+	0	68,0	0	0	57,0	+	+	0	0			
50		78,0	+	+	78,0	+	+	63,5	+	+	+	+			-
55	+0,5/+5,0	84,0	0	0				70,0	+	+	0	0			
60		93,0	+	+	93,0	+	+	76,0	+	+	0	+			
65		100,0	0	0				82,5	+	+	0	0			
70		108,0	+	+	108,0	0	0	88,5	+	+	0	+			
75	+0,5/+7,0							94,5	0	0	0	0			
80		122,0	+	+	122,0	0	0	101,0	+	+	0	+			
85								108,0	+	0	0	0			
90		135,0	0	0	135,0	0	0	113,0	+	+	0	0			
95								120,5	0	0	0	0			
100		148,0	+	+	148,0	0	0	126,0	+	+	0	+			
110	+0,5/+9,0	161,0	+	+				139,0	+	+	0	0	139,0	+	+
120		180,0	+	0				147,0	+	0	0	0	147,0	+	+
130								159,0	+	0	0	0	159,0	+	+
140			_			_		171,0	+	0	0	0	171,0	+	+
150			_					189,0	+	0	0	0	189,0	+	+
160				_				195,0	+	0	0	0	195,0	+	+
165	-								_				222,0	0	0

 ρ = 1,15 g/cm 3

LINNOTAM Rundstäbe

Nennmaß	Toleranz	2.00				1.000			
								+ MoS	
		1.7	-		1.7			7	
Øinmm	in mm	kg/m			kg/m				
30	+0,2/+1,4	0,85		+	0,85		+		0
35				- —	1,2	_ +	+	0	0
40		1,5			1,5		+	0	0
45	+0,3/+1,9			- —	1,9		+	0	0
50		2,4		+	2,4	_ +	+	<u> </u>	0
55	<u> </u>	2,8	- +	+	2,8	+	+	0	0
60	+0,3/+2,5	3,4	+	+	3,4	+	+	0	0
65		4,0	+	+	4,0	+	+	0	0
70		4,8	+	+	4,8	+	+	0	
75	+0,4/+2,8	5,6	_ +	+	5,6	_ +	+	0	
80		6,2	+	+	6,2	+	+	0	+
85	+0,5/+3,2	7,0	+	+	7,0	+	+	0	0
90		7,8	+	+	7,8	+	+	0	+
95	+0,6/+3,5	8,7	+	0	8,7	+	0	0	0
100		9,6	+	+	9,6	+	+	+	+
110	+0,7/+3,9	11,6	+	+	11,6	+	+	+	+
115	+0,8/+4,3	12,9	+	+	12,9	+	+	0	0
120	-	13,6	+	+	13,6	+	+	+	+
125		15,3	+	+	15,3	+	+	0	+
130	+0,8/+0,5	16,4	+	+	16,4	+	+	+	+
135	-	17,7	+	0	17,7	+	0	0	0
140	-	18,9	+	+	18,9	+	+	+	+
145	+0,8/+5,3			. —	20,4		0	0	0
150		21,6	+	+	21,6	+	+	+	+
155	+0,8/+6,0			- —	23,9		0	0	0
160		24,6		+	24,6		+	0	0
165	+1,07/+6,5			- —	26,0		+	<u> </u>	0
170		27,4		+	27,4		+	-	0
175	-	27,4		· —	29,7		0	-	0
180	-	30,6		+		- <u>·</u>		_	
					245			0	0
190	+1,0/+7,5	34,5	- +	+	34,5	_ +	+		
200	+1,0/+8,5	38,2		+	38,2		+	<u> </u>	+
210	_				42,2		+	+	0
220				- —	46,9	_ +	+	<u> </u>	0
230	+1,0/+9,5			- —	50,0		+	0	0
240				- —	55,0		+	0	0
250				- —	60,4	_ +	+	0	+
260	+1,0/+11,0				65,2	+	+		0
270				- —	70,0	+	+		0
280					75,0	+	+		0
290	+1,5/+12,0				80,7	+	+		0
300					86,3	+	+		+
310							_	_	0
					92,0	+	+		

^{+ =} Lagerware O = Auf Anfrage

LINNOTAM 08-09

Nennmaß	Toleranz	1.000		
⊘ in mm	in mm kg/m			
330	+1,5/+13,5	+	+	0
340	113,0	+	+	
350	117,5	+	+	0
360	124,0	+	+	0
370	+1,5/+15,0 131,0	+	+	
380	140,0	+	+	
390	144,0	+	+	
400	153,0	+	+	0
410	+1,5/+16,5 165,0	+	+	
420	173,8	+	+	
430	183,0	+	+	
440	187,0	+	+	
450	195,0	+	+	
460	+1,5/+18,0 205,0	+	+	
470	216,6		+	
480	221,0	+	+	
490	233,0	+		
500	242,0	+		
510	+3,00/+21,0 251,0	+	+	
520	262,4	<u>·</u>	+	
530			+	
530	268,0	— -		
	276,5			
550	294,0		0	
560	309,0			
570	311,0			
580	316,0			
590	331,0			
600	346,0	+	+	
610	+3,0/+25,0 348,0		_	
620	365,0		+	
625	367,0		0	
630	376,0	0	0	
640	385,0	0	0	
650	400,0	+	+	
660	408,0	+	+	
670	425,0	+	0	
690	449,0	0	0	
700	470,0	+	+	
710	483,0	+	0	-
720	492,0	0	0	,
730	506,0	0	0	
750	535,0	+	0	,
790	591,0	0	0	

Halbzeuge

 ρ = 1,15 g/cm 3

LINNOTAM Hohlstäbe

Gewicht in kg/m

ID AD	50	55	60	65	70	75	80	85	90	95	100	110	120	130	140	150	160	170	180
30	1,8	2,4	3,1	3,5	4,2	5,0	5,89												
40	1,3		2,5	3,1	3,6	4,4	5,0	6,0	6,9		8,7	10,6	12,7	15,0	17,8	20,5	23,7	26,5	29,8
50				2,3	3,3	3,6	4,4		6,2		8	9,8	12,7	14,2	17,1	20,6	22,7	25,8	29,1
60						2,7	3,5		5,2		7,1	9,3	11,3	13,4	17,0	18,2	21,9	25,2	27,0
70								3,2	4,1	5,1	6,0	7,9	10,5	12,7	15,5	18,2	20,8	23,8	27,0
80											4,6	7,0	8,9	11,5	14,8	17,2	20,1	23,2	26,6
90												5,5	7,9	10,0	12,9	15,8	18,7	21,8	24,8
100													5,8	8,4	11,2	14,2	17,1	20,2	23,6
110															9,4	12,4	15,3	18,4	21,4
120															7,4	10,4	13,3	16,4	19,4
130																9,1	11,2	14,3	17,3
140																		11,9	15,2
150																			12,4

LINNOTAM 10-11

ID AD	190	200	210	220	230	240	250	260	270	280	290	300	310	320	330	340	350	360	370
30																			
40	32,7	36,7	40,0	44,5	48,8	52,6													
50	32,0	36,0	39,9	43,9	48,4	52,0	58,0	63,2	67,7	72,3	78,6	83,0							
60	32,1	35,2	39,2	43,3	47,4	51,3	57,2	62,5	66,9	71,5	77,9	82,2							
70	30,4	35,3	37,4	42,2	46,4	50,3	56,3	61,5	65,9	70,5	76,9	80,7							
80	29,0	33,3	37,3	41,0	45,2	49,2	55,1	60,4	64,8	69,4	75,7	80,2	85,7	92,8	97,5	104,4	110,1	116,7	124,0
90	27,7	32,1	35,8	39,8	43,9	47,9	53,8	61,2	63,5	68,0	74,4	78,7	84,4	91,4	96,2	103,0	108,8	115,3	122,8
100	26,7	30,7	34,3	38,3	42,3	46,4	52,3	57,5	62,0	66,5	72,9	77,4	83,1	89,9	94,9	101,5	107,3	113,0	121,2
110	24,9	28,9	32,4	36,5	40,8	44,7	50,5	55,8	60,3	64,8	71,4	75,7	71,4	88,4	93,2	99,8	105,8	112,3	119,7
120	22,9	27,0	30,4	34,8	38,9	42,9	49,6	54,0	58,4	62,9	69,5	73,9	79,5	86,5	91,3	98,1	103,9	110,6	117,8
130	20,7	24,8	28,2	32,5	36,8	40,8	46,8	51,9	56,3	60,9	67,4	71,8	77,5	84,5	89,3	96,3	102,0	108,4	116,0
140	18,4	22,4	25,9	30,3	35,0	38,6	44,4	49,7	54,0	58,6	65,5	73,2	75,5	82,0	87,3	94,1	99,9	106,6	114,3
150	15,9	19,9	23,3	27,8	32,5	36,5	45,0	50,2	51,7	56,7	63,0	67,8	73,1	80,0	84,9	91,7	97,7	104,3	111,7
160	13,1	17,2	20,7	25,1	29,9	33,9	42,2	47,3	52,6	58,1	63,8	65,1	70,5	77,8	82,5	89,4	95,5	101,7	109,1
170		15,0	17,7	22,25	27,0	31,0	39,1	44,3	49,5	55,1	60,7	66,7	67,8	75,0	79,9	86,5	92,4	99,0	106,4
180			15,0	19,0	23,9	28,0	35,9	41,1	46,3	51,6	57,5	63,4	69,4	75,8	76,9	83,8	89,5	96,4	103,4
190				15,8	20,7	24,7	32,4	37,5	42,9	48,0	54,1	60,0	66,1	72,4	78,9	80,7	87,6	94,8	102,2
200					17,3	21,3	28,9	34,0	39,3	44,8	50,5	56,4	62,5	68,8	75,3	82,0	88,8	92,0	99,1
210							25,0	30,2	35,4	40,9	46,7	52,6	58,6	46,9	71,4	78,1	85,0	92,0	96,1
220								26,1	31,4	36,9	42,7	48,5	54,6	60,9	67,4	74,1	81,0	88,0	95,3
230								22,0	27,2	32,8	38,4	44,3	50,4	56,7	63,2	69,9	76,8	83,8	91,1
240									22,9	28,4	34,1	40,0	46,1	52,3	58,8	65,5	72,4	79,4	86,7
250										23,7	29,6	35,3	41,5	47,7	54,2	60,8	67,8	74,8	82,0
260											24,6	30,5	36,6	42,9	49,4	56,1	63,0	70,0	77,3
270												25,5	31,6	37,9	44,4	51,0	58,0	65,0	72,3
280													26,5	32,7	39,2	45,9	52,8	59,8	67,1
290														27,4	33,8	40,5	47,4	54,5	61,7
300															28,2	34,9	41,8	48,8	56,1
310																29,2	36,0	43,1	50,4
320																	30,1	37,1	44,4
330																		31,0	38,2
340																			31,9

 ρ = 1,15 g/cm 3

LINNOTAM

Hohlstäbe

Gewi		

ID AD	380	390	400	410	420	430	440	450	460	470	480	490	500	510	520	530	540	550	560
80	130,3	138,8	146,8	155,9	161,3	170,0	178,0	186,3	193,8	203,3									
90	129,1	137,5	145,7	154,6										0					
100	127,5	136,0	143,3	152,3	158,5	167,2	175,2	183,5	191,0	200,5	209,3		228,4	0	0				
110	125,8	134,5	141,6	150,8	157,0	165,6	173,7	181,9	189,5	198,8		217,6	226,8	0	0	0	0		
120	124,1	132,6	139,9	149,0	155,1	163,8	171,8	180,2	187,9	197,1	205,9	215,8	225,0	0	0	0	0	0	0
130	122,1	130,8	137,9	147,1	153,3	161,9	170,0	178,2	185,8	195,3	204,0	214,0	223,0	0	0	0	0	0	0
140	120,0	128,6	135,9	144,9	151,0	159,7	167,8	176,0	183,6	193,0	201,9	211,8	221,0	0	0	0	0	0	0
150	117,9	126,4	133,8	142,8	148,9	157,6	165,6	173,9	181,5	190,9	199,7	209,6	218,5	0	0	0	0	0	0
160	115,3	123,9	131,2	140,2	146,4	162,9	163,1	171,3	178,9	188,4	197,2	207,1	216,3	0	0	0	0	0	0
170	112,6	121,1	128,5	137,5	143,6	152,3	160,4	168,8	176,2	185,6	194,5	204,3	213,5	0	0	0	0	0	0
180	111,8	120,3	127,6	134,6	140,7	149,4	157,4	165,7	173,6	182,7	191,8	201,7	210,9	0	0	0	0	0	0
190	109,4	117,0	124,3	131,5	137,6	146,3	154,7	162,9	170,5	179,6	188,7	198,6	207,8	0	0	0	0	0	0
200	106,1	114,0	119,9	128,5	134,3	143,3	151,4	160,3	167,2	176,7	185,5	195,4	204,5	0	0	0	0	0	0
210	102,7	110,6	116,4	125,1	130,9	140,6	149,3	157,6	164,5	174,6	183,4	193,3	201,4	0	0	0	0	0	0
220	99,0	106,9	112,8	121,4	127,6	136,3	145,0	153,3	160,1	169,6	178,8	189,0	198,2	0	0	0	0	0	0
230	98,6	103,1	109,0	117,6	123,8	133,2	141,3	149,5	157,0	166,6	175,3	185,2	194,4	0	0	0	0	0	0
240	94,2	101,8	105,0	113,6	119,8	129,3	137,3	145,6	153,1	162,6	171,4	181,3	190,5	0	0	0	0	0	0
250	89,6	79,2	105,0	109,4	115,6	125,5	133,6	141,9	149,4	158,6	167,4	177,6	186,7	0	0	0	0	0	0
260	84,8	92,4	100,3																
270	79,8	87,4	95,3	103,3	106,7	116,7	124,8	133,0	140,6	150,0	158,9	168,8	177,9	0	0	0	0	0	0
280	74,6	82,3	90,0	98,2	106,7	112,2	120,3	128,5	136,1	145,5	154,4	164,2	173,4	0	0	0	0	0	0
290	69,2	76,9	84,7	92,8	97,0	107,7	115,8	124,0	131,6	141,0	149,9	159,7	168,9	0	0	0	0	0	0
300	63,6	66,3	79,1	87,1	95,4	103,05													
310	57,8	65,5	73,3	81,4	89,6	98,4	105,5	113,8	121,4	130,8	139,6	149,5	158,7	0	0	0	0	0	0
320	51,0	59,5	67,4	75,4	83,7	92,2	100,7												
330	45,7	53,3	61,2	69,2	77,5	86,0	94,6												
340	39,3	47,0	54,8	62,9	71,1	79,96	88,2	97,0	107,6	117,0	125,8	135,7	144,9	0	0	0	0	0	0
350	35,4	40,0	48,3	56,3	64,6	73,0	81,6	91,5	99,5	111,2	120,01	129,8	139,2	0	0	0	0	0	0
360		36,4	41,5	49,5	57,8	66,3	74,9	83,7	92,8	102,0	114,0	123,8	133,1	0	0	0	0	0	0
370				42,6	50,8	59,3	67,9	76,8	85,8	95,0	97,3	117,7	126,8	0	0	0	0	0	0
390						44,8	53,5	69,6	71,3	80,5	90,0	99,6		0	0	0	0	0	0
400							45,9	62,3	66,1	73,0	83,4	92,0	101,8	0	0	0	0	0	0
410								47,0	56,0	65,2	76,7	84,3	94,1	0	0	0	0	0	0
420								42,2	48,1	57,3	66,7	76,4	86,2	0	0	0	0	0	0
430										49,2	58,6	68,2	78,0	0	0	0	0	0	0
440											50,3	59,9	69,7	0	0	0	0	0	0
450												51,4	61,2	0	0	0	0	0	0
460													52,5			0	0	0	0
470																	0	0	0
480																		0	0
490																			0

■ Länge: 3.000 mm ■ Länge: 2.000 mm ■ Länge: 1.000 mm

LINNOTAM 12–13

ID AD	570	580	590	600	610	620	630	640	650	660	670	690	700	710	720	730	750	770	790	800
130	0	0																		
140	0	0	0	0																
150	0	0	0	0	0															
160	0	0	0	0	0	0	0													
170	0	0	0	0	0	0	0	0	0	0										
180	0	0	0	0	0	0	0	0	0	0	0	0	0							
190	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0				
200	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0			
210	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
220	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
230	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
240	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
250	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
260																				
270	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
280	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
290	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
300																				
310	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
320																				
330																				
340	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
350	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
360	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
370 ———	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
390	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
400	0	0	0	0	0															
410	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
420	0	0	0	0	0															
430	0	0	0	0	0															
440	0	0	0	0	0															
450	0	0	0	0	0															
460	0	0	0	0	0															
470	0	0	0	0	0															
480	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
490	0	0	0	0	0															
500	0	0	0	0	0															
510		0	0	0	0															
520			0	0	0															
530				0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
560										0	0	0	0	0	0	0	0	0	0	0
600		-											0	0	0	0	0	0	0	0

 ρ = 1,15 g/cm 3

LINNOTAM

Ringe

ID AD	600	625	625	640	650	675	675	687	700	725	750	750	750	770	775	800	820	820	830	840	850	860	875	900	925	950	975	1.000
370	0																											
380	0																											
390 400	0	0																										
410	0	0																										
420	0	0																										
430	0	0																										
440	0	0																										
450 460	0	0							—																			
470	0	0	0	0	0																							
480	0	0	0	0	0	0															-							
490	0	0	0	0	0	0																						
500	0	0	0	0	0	0																						
510 520	0	0	0	0	0	0			0					0														
530	0	0	0	0	0	0	_		0					0	0													
540	0	0	0	0	0	0			0	0				0	0													
550	0	0	0	0	0	0			0	0				0	0													
560		0	0	0	0	0	0	0	0	0				0	0													
570		0	0	0	0	0	0	0	0	0				0	0													
580		0	0	0	0	0	0	0	0	0	0			0	0													
590 600	—	0		0	0	0	0	0	0	0	0			0	0		—			0						—		
610					0	0	0	0	0	0	0			0	0					0								
620						0	0	0	0	0	0	0		0	0					0								
630						0	0	0	0	0	0	0		0	0					0								
640						0	0	0	0	0	0	0	_	0	0	0	0			0								
650 660	—							0	0	0	0	0	0	0	0	0	0			0								
670										0	0	0	0	0	0	0	0			0	0							
680										0	0	0	0	0	0	0	0			0	0							
690											0	0	0	0	0	0	0	0		0	0							
700											0	0	0	0	0	0	0	0	0	0	0							
710														0	0	0	0	0	0	0	0	0						
730															U	0	0	0	0	0	0	0						
740							-										0	0	0	0	0	0						
750																	0	0	0	0	0	0	0					
760																	0	0	0	0	0	0	0					
770																	0		0	0	0	0	0					
780 790																	0				0	0	0	0				
800																							0	0				
810																							0	0	0			
820																								0	0			
830																								0	0			
840 850	—														—									0	0	0		
860																									0	0		
870																										0	0	
880																										0	0	
890																										0	0	_
900																											0	0
910	—									—																—		0
920																												0

Länge: 580 mmLänge: 640 mmLänge: 730 mmLänge: 750 mm

[■] Länge: 370 mm ■ Länge: 440 mm ■ Länge: 500 mm ■ Länge: 540 mm

LINNOTAM 14–15

 $\rho = 1.15 \, g/cm^3$

LiNNOTAM Scheiben

Außen ⊘			+ MoS
750	0	0	0
800	0	0	0
850	0	0	0
900	0	0	0
950	0	0	0
1.000	0	0	0
1.050	0	0	0
1.100	0	0	0
1.150	0	0	0
1.200	0	0	0
1.250	o	0	0
1.300	o	0	0
1.350		0	0
1.400	o	0	0
1.450		0	0
1.500	o	0	0
1.650	o	0	0

LINNOTAM GLIDE 16-17

 $\rho = 1.14\,\text{g/cm}^3$

LiNNOTAM GLiDE Platten

Stärke	Toleranz	3.050×	1.220		2.000 ×	1.220			2.00	0 × 1.	000				1.000 × 1	L.000	
in mm	in mm	kg/m			kg/m			kg/m							kg/m		
8	+0,2/+1,5							11,5	+	+		0					
10		17,0	+	+	16,5	0	0	13,5	+	+	+	+	+	0			-
12	+0,3/+2,5	20,1	+	+	19,4	0	0	16,0	+	+	+	+	0	0			
15		24,3	+	0	24,3	0	0	20,0	+	+	0	0	+	0			
16		25,0	0	0	25,0	0	0	21,5	0	+	0	+	0	0			
18								24,5	+	0	0	0	0	0			
20		31,0	+	0	31,0	0	0	26,0	+	+	+	+	+	0			
22								29,0	+	0	0	0	0	0		_	
25		39,0	+	0	39,0	0	0	32,0	+	+	+	+	0	0			
30	+0,5/+3,5	47,0	+	0	47,0	0	0	38,5	+	+	+	0	+	0			
35		55,8	+	0	55,8	0	0	45,3	+	0	0	0	0	0			
40		62,0	+	0	62,0	0	0	51,0	+	+	+	+	+	0			
45		68,0	+	0	68,0	0	0	57,0	+	0	0	0	0	0			
50		78,0	+	0	78,0	0	0	63,5	+	+	+	+	+	0			
55	+0,5/+5,0	84,0	+	0	84,0	0	0	70,0	+	0	0	0	0	0			
60		93,0	+	0	93,0	0	0	76,0	+	0	0	0	0	0			-
65		100,0	0	0	100,0	0	0	82,5	0	0	0	0	0	0			-
70		108,0	+	0	108,0	0	0	88,5	+	0	0	0	0	0			-
75	+0,5/+7,0				115,8	0	0	94,5	0	0	0	0	0	0			-
80		122,0	+	0	122,0	0	0	101,0	+	0	0	0	0	0		_	-
85					131,0	0	0	108,0	_ _	0	0	0	0	0			-
90		135,0	+	0	135,0	0	0	113,0	+	0	0	0	0	0			-
95					146,4	0	0	120,5	0	0	0	0	0	0			-
100		148,0		0	148,0		0	126,0	+	0	0	0	0	0			•
110	+0,5/+9,0	161,0	0	0				139,0	0	0	0	0	0	0	139,0	0	
120		180,0	0	0			_	147,0		0	0	0	0	0	147,0	0	-
130							_	159,0		0	0	0	0	0	159,0	0	-
140								171,0	0	0	0	0	0	0	171,0	0	-
150								189,0	_ _	0	0	0	0	0	189,0	0	-
160		-						195,0	0	0	0	0	0	0	195,0	0	-
165				—						—	_		_		222,0		-

 ρ = 1,14 g/cm³

LINNOTAM GLIDE Rundstäbe

Nennmaß	Toleranz	2.00	0		1.000
 ∅ in mm	in mm	kg/m		kg/m	
30	+0,2/+1,4	0,85	+ +	0,85	+ + + 0 0
35				1,2	+ + 0 0 0
40		1,5	+ +	1,5	+ + + 0 0
45	+0,3/+1,9			1,9	+ + 0 0 0
50		2,4	+ +	2,4	+ + + 0 0
55				2,8	+ + 0 0 0
60	+0,3/+2,5	3,4	+ +	3,4	+ + + 0 0
65				4,0	+ + 0 0 0
70		4,8	+ +	4,8	+ + + 0
75	+0,4/+2,8			5,6	+ 0 0 0
80		6,2	+ +	6,2	+ + + 0
85	+0,5/+3,2	<u> </u>		6,9	+ 0 0 0
90		7,8	+ +	7,8	+ + + 0
95	+0,6/+3,5				
100				9,6	+ + + 0 0 0
110	+0,7/+3,9	11,6	0 0	11,6	<u>+ + + + 0 0 0 </u>
115	+0,8/+4,3	12,9	0 0	12,9	0 0 0 0 0 0
120			0 0	13,6	<u>+ + + + 0 0 0</u>
125		15,3	0 0	15,3	0 0 0 0 0 0
130	+0,8/+0,5	16,4	0 0	16,4	+ + + 0 0 0
135				17,7	0 0 0 0 0 0
140				18,9	+ + + 0 0 0
145	+0,8/+5,3			20,4	0 0 0 0 0 0
150			- - 0	21,6	- + + + 0 0 0
155 160	+0,8/+6,0		+ 0	23,9	$-\frac{0}{+}\frac{0}{0}\frac{0}{0}\frac{0}{0}\frac{0}{0}\frac{0}{0}$
165	+1,07/+6,5			26,0	$-\frac{1}{0} \frac{0}{0} \frac{0}{0} \frac{0}{0} \frac{0}{0} \frac{0}{0} \frac{0}{0}$
170	. 1,077.0,3	27,4	0 0	27,4	+ 0 0 0 0 0
175				29,7	
180		30,6	0 0	30,6	+ + 0 0 0 0
190	+1,0/+7,5	34,5	0 0	34,5	0 0 0 0 0 0
200	+1,0/+8,5	38,2	0 0	38,2	+ + 0 0 0 0
210		<u> </u>		42,2	+ 0 0 0 0 0
220				46,9	+ 0 0 0 0 0
230	+1,0/+9,5			50,0	0 + 0 0 0 0
240				55,0	0 0 0 0 0 0
250				60,4	+ + 0 0 0 0
260	+1,0/+11,0			65,2	0 0 0 0 0 0
270				70,0	0 0 0 0 0 0
280				75,0	0 0 0 0 0 0
290	+1,5/+12,0			80,7	0 0 0 0 0
300				86,3	0 0 0 0 0
310				92,0	0 0 0 0 0
320				98,0	0 0 0 0

^{+ =} Lagerware O = Auf Anfrage

LINNOTAM GLIDE 18-19

Nennmaß	Toleranz		1.000	
 ⊘ in mm	in mm	kg/m		
330	+1,5/+13,5	104,0	0 0 0	0 0 0
340		113,0	0 0 0	0 0 0
350		117,5	0 0 0	0 0 0
360		124,0	0 0 0	0 0 0
370	+1,5/+15,0	131,0	$-\frac{\circ}{\circ}\frac{\circ}{\circ}\frac{\circ}{\circ}$	$\frac{\circ}{\circ} \frac{\circ}{\circ} \frac{\circ}{\circ}$
380	1,5/15,0	140,0	$-\frac{\circ}{\circ}\frac{\circ}{\circ}\frac{\circ}{\circ}$	0 0 0
390		144,0	$-\frac{\circ}{\circ}\frac{\circ}{\circ}\frac{\circ}{\circ}$	$\frac{\circ}{\circ} \frac{\circ}{\circ} \frac{\circ}{\circ}$
400			$-\frac{\circ}{\circ}\frac{\circ}{\circ}\frac{\circ}{\circ}$	$\frac{\circ}{\circ} \frac{\circ}{\circ} \frac{\circ}{\circ}$
	11 5/116 5	153,0		
410	+1,5/+16,5	165,0	$-\frac{0}{0} \frac{0}{0} \frac{0}{0}$	0 0 0
420		173,8	0 0 0	0 0 0
430		183,0	0 0 0	0 0 0
		187,0	0 0 0	0 0 0
450		195,0	0 0 0	0 0 0
460	+1,5/+18,0	205,0	0 0 0	0 0 0
470		216,6	0 0 0	0 0 0
480		221,0	0 0 0	0 0 0
490		233,0	0 0 0	0 0 0
500		242,0	0 0 0	0 0 0
510	+3,00/+21,0	251,0	0 0 0	0 0 0
520		262,4	0 0 0	0 0 0
530		268,0	0 0 0	0 0 0
540		276,5	0 0 0	0 0 0
550		294,0	0 0 0	0 0 0
560		309,0	0 0 0	0 0 0
570		311,0	0 0 0	0 0 0
580		316,0	0 0 0	0 0 0
590		331,0	0 0	
600		346,0	0 0	0
610	+3,0/+25,0	348,0	0 0	<u> </u>
620		365,0	0 0	
625		367,0	0 0	<u> </u>
630		376,0	0 0	<u> </u>
640		385,0	0 0	_
650		400,0	0 0	-
660		408,0	0 0	_
670		425,0	$-\frac{\circ}{\circ}\frac{\circ}{\circ}$	- 0
690		449,0	- 	_
700		470,0	0 0	0 — —
710			$-\frac{0}{0}\frac{0}{0}$	0 — —
		483,0		
720		492,0	0 0 —	<u> </u>
730		506,0	0 0 —	<u> </u>
750		535,0	0 0 —	<u> </u>
790		591,0	0 0 —	<u> </u>
800		601,0	0 0	0

Platten

Rundstäbe

Reibungsloser Dauerläufer

LINNOTAM GLIDE Pro T 20 - 21

 $\rho = 1.14\,\text{g/cm}^3$

LiNNOTAM GLiDE Pro T Platten

Stärke	Toleranz	3.050 × 1.220		2.0	2.000 × 1.220				2.000 × 1.000							
in mm	in mm	kg/m					kg/m					kg/m				
8	+0,2/+1,5										·					
10							16,5	0	0	0	0	13,5	+	0	0	0
12	+0,3/+2,5						19,4	0	0	0	0	16,0	+	0	0	0
15		24,3	0	0	0	0	24,3	0	0	0	0	20,0	+	0	0	0
16		25,0	0	0	0	0	25,0	0	0	0	0	21,5	0	0	0	0
18												24,5	0	0		0
20		31,0	0	0	0	0	31,0	0	0	0	0	26,0	+	0	0	0
22												29,0	0	0		0
25							39,0	0	0	0	0	32,0	+	0	0	0
30	+0,5/+3,5	47,0	0	0	0	0	47,0	0			0	38,5	+	0	0	0
35		55,8	0	0	0	0	55,8	0	0	0	0	45,3	0	0	0	0
40		62,0	0	0	0	0	62,0	0	0	0	0	51,0	+	0	0	0
45		68,0	0	0	0	0	68,0	0	0	0	0	57,0	0	0	0	0
50		78,0	0	0	0	0	78,0	0	0	0	0	63,5	+	0	0	0
55	+0,5/+5,0	84,0	0	0	0	0						70,0	0	0	0	0
60		93,0	0	0	0	0	93,0	0	0	0	0	76,0			0	
65		100,0	0	0	0	0						82,5			0	
70		108,0	0	0	0	0	108,0	0	0	0	0	88,5			0	
75	+0,5/+7,0											94,5			0	
80		122,0	0	0	0	0	122,0	0	0	0	0	101,0	+	0	0	0
85												108,0	0	0	0	0
90		135,0	0	0	0	0	135,0	0	0	0	0	113,0	0	0	0	0
95												120,5	0	0	0	0
100		148,0	0	0	0	0	148,0	0	0	0	0	126,0	0	0	0	0
110	+0,5/+9,0	161,0	0	0	0	0						139,0	0	0	0	0
120		180,0	0	0	0	0						147,0	0	0	0	0
130												159,0	0	0	0	0
140												171,0	0	0	0	0
150												189,0	0	0	0	0
160												195,0	0	0	0	0
165																

 ρ = 1,14 g/cm³

LiNNOTAM GLiDE Pro T Rundstäbe

Nennmaß	Toleranz	2.	000	1.000
 ∅ in mm	in mm	kg/m		kg/m
30	+0,2/+1,4	0,85	0 0 0	0,85 0 0 0 0
35		1,2	0 0 0	1,2 0 0 0 0
40		1,5	0 0 0	1,5 0 0 0 0
45	+0,3/+1,9	1,9	0 0 0	1,9 0 0 0 0
50		2,4	0 0 0	2,4 0 0 0 0
55		2,8	0 0 0	2,8 0 0 0 0
60	+0,3/+2,5	3,4	0 0 0	3,4 0 0 0 0
65		4,0	0 0 0	4,0 0 0 0
70				4,8 O O
75	+0,4/+2,8			5,6 O
80				6,2 0 0 0
<u></u> 85	+0,5/+3,2			7,0 O
90				7,8 0 0 0 0
95	+0,6/+3,5			8,7 O O O
100		9,6	0 0	9,6 0 0 0
110	+0,7/+3,9	11,6	0 0	11,6 0 0 0
115	+0,8/+4,3	12,9	0 0	12,9 0 0 0
120		13,6	0 0	13,6 0 0 0
125		15,3	0 0	15,3 0 0 0 0
130	+0,8/+0,5	16,4	0 0	16,4 0 0 0 0
135		17,7	0 0	17,7 0 0 0 0
140		18,9	0 0	18,9 0 0 0 0
145	+0,8/+5,3			20,4 0 0 0 0
150		21,6	0 0	21,6 0 0 0 0
155	+0,8/+6,0			23,9 O O O O
160		24,6	0 0	24,6 O O O O
165	+1,07/+6,5			26,0 O O O
170		27,4	0 0	27,4 O O O O
175				29,7 O O O O
180		30,6	0 0	30,6 O O O
190	+1,0/+7,5	34,5	0 0	34,5 O O O O
200	+1,0/+8,5	38,2	0 0	38,2 O O O
210				42,2
220				46,9 O O O
230	+1,0/+9,5			50,0 O O O
240				55,0
250		-		60,4 O O O
260	+1,0/+11,0			65,2 0 0 0 0
270				70,0 0 0 0 0
280				75,0 0 0 0 0
290	+1,5/+12,0			O
300				86,3 O
310				92,0 O
320				98,0 O

LINNOTAM GLIDE Pro T 22 – 23

Nennmaß	Toleranz	1.000	
 ⊘in mm		kg/m	
330	+1,5/+13,5	104,0	0
340		113,0	0
350		117,5	0
360		124,0	0
370	+1,5/+15,0	131,0	0
380		140,0	0
390		144,0	0
400		153,0	0
410	+1,5/+16,5	165,0	0
420		173,8	0
430		183,0	0
440		187,0	0
450		195,0	0
460	+1,5/+18,0	205,0	0
470		216,6	0
480		221,0	0
490		233,0	0
500		242,0	0
510	+3,00/+21,0	251,0	0
520		262,4	0
530		268,0	0
540		276,5	0
550		294,0	0
560		309,0	0
570		311,0	0
580		316,0	0

Platten

Rundstäbe Hohlstäbe

LINNOTAM HIPERFORMANCE

Der Schwerlastprofi

LINNOTAM HIPERFORMANCE 24 – 25

 $\rho = 1,12\,g/cm^3$

LiNNOTAM HiPERFORMANCE 612 Platten

Stärke	Toleranz	2.000 × 1.0	000
in mm	in mm	kg/m	
8	+0,2/+1,5	11,5	0
10		13,5	0
12	+0,3/+2,5	16,0	0
15		20,0	0
16		21,5	0
20		26,0	0
25		32,0	0
30	+0,5/+3,5	38,5	0
35		45,3	0
40		51,0	0
45		57,0	0
50		63,5	0
55	+0,5/+5,0	70,0	0
60		76,0	0
65		82,5	0
70		88,5	0
75	+0,5/+7,0	94,5	0
80		101,0	0
85		108,0	0
90		113,0	0
95		120,5	0
100		126,0	0

 ρ = 1,03 g/cm 3

LiNNOTAM HiPERFORMANCE 1200 Platten

Stärke	Toleranz	2.000 × 1.0	000
in mm	in mm	kg/m	
8	+0,5/+1,5	10,1	0
10		12,1	0
12	-	14,2	0
15	+0,5/+2,0	18,2	0
16	-	20,3	0
18		21,1	0
20		23,1	0
25	+0,5/+2,5	29,0	0
30	-	34,2	0
35		39,5	0
40	+0,5/+3,0	45,3	0
		50,4	0
50		55,7	0
55	+0,5/+3,5	64,6	0
60		66,8	

LINNOTAM HIPERFORMANCE 26 – 27

 ρ = 1,12 g/cm³

LiNNOTAM HiPERFORMANCE 612 Rundstäbe

Nennmaß	Toleranz	1.000
Ø in mm	in mm	kg/m
30	+0,2/+1,4	0,9 O
35		1,2 O
40		1,5 O
45	+0,3/+1,9	1,9 O
50		
55		3,1 O
60	+0,3/+2,5	3,4 O
65		4,2 O
70		4,8 O
75	+0,4/+2,8	5,6 O
80		6,2 O
85	+0,5/+3,2	6,9 O
90		7,8 O
95	+0,6/+3,5	8,7 O
100		9,6 O
110	+0,7+3,9	11,6 O
115	+0,8/+4,3	12,9 O
120		13,6 O
125		15,3 O
130	+0,8/+5,0	16,4 O
135		17,7 O
140		18,9 O
145	+0,8/+5,3	20,4 O
150		21,6 O
155	+0,8/+6,0	23,9 O
160		24,6 O
165	+1,0/+6,5	26,0 O
170		27,4 O
175		29,7 O
180		30,6 O
190	+1,0/+7,5	34,5 O
200	· · ·	38,2 O
210	+1,0/+8,5	42,2 0
220		46,9 O
230	+1,0/+9,5	50,0 O
240		55,0 O
250		60,4 O
260	+1,0/+11,0	65,2 O
270		70,0 O
280		75,0 O
290	+1,5/+12,0	80,7 O
300		
300		86,3 O

Nennmaß	Toleranz	1.000
Ø in mm	in mm	kg/m
310		92,0 O
320		98,0 O
330	+1,5/+13,5	104,0 O
340	•	113,0 O
350		117,5 O
360	-	124,0 O
370	+1,5/+15,0	131,0 O
380		140,0 O
390	-	151,5 O
400		153,0 O
410	+1,5/+16,5	165,0 O
420		173,8 O
430		183,0 O
440	-	187,0 O
450		195,0 O
460	+1,5/+18,0	205,0 O
470		216,6 O
480		226,0 O
490		233,0 O
500		242,0 O
510	+3,0/+21,0	251,0 O
520		262,4 O
530		274,5 O
540		284,8 O
550		294,0 O
560		309,0 O
570	-	323,5 O
580		329,0 O
590		343,7 O
600	-	352,9 O
610	+3,0/+25,0	360,0 O
620	-	377,6 O
625		383,6 O
630		386,0 O
640		397,0 O
650		415,6 O
660	-	425,7 O
670		441,1 O
680	-	454,1 O
690		468,7 O
700		488,9 O
710		498,5 O

 ρ = 1,03 g/cm 3

LiNNOTAM HiPERFORMANCE 1200 Rundstäbe

Nennmaß	Toleranz	3.000		500	
	in mm	kg/m		kg/m	
20	+0,1/+0,2	0,36	0		
25		0,55	0		
30	+0,1/+0,3	0,78	0		
35	+0,1/+0,4	1,0	0		
40	+0,1/+0,5	1,3	0		
45	+0,1/+0,6	1,7	0		
50	+0,1/+0,7	2,1	0		
55	+0,1/+0,8	2,5	0		
60	+1,0/+0,9	3,0	0		
70	+1,0/+2,0			4,4	0
80				5,7	0
90				7,2	0
100	+1,0/+2,5			8,9	0
110				10,2	0
120	+1,0/+3,0			12,9	0
130				15,1	0
140				17,4	0
150				19,7	0
160	+1,0/+3,5			22,8	0
170				25,6	0
180				28,7	0
190				31,9	0
200				35,3	0

LINNOTAM HIPERFORMANCE 28 – 29

 $\rho = 1.03 \, g/cm^3 (1200)$

LiNNOTAM HiPERFORMANCE 1200 Hohlstäbe

Ne	Nennmaß		
	in mm	kg/m	
AD	ID		
80	30	5,1	0
90	30	6,5	0
100	30	8,2	0
100	50	7,0	0
100	60	6,2	0
110	30	9,9	0
110	50	8,8	0
110	60	7,9	0
120	30	11,9	0
120	50	10,7	0
120	60	9,9	0
130	30	14,1	0
130	40	13,5	0
130	50	12,9	0
130	60	12,0	0
130	80	9,9	0
140	30	16,3	0
140	50	15,1	0
140	60	14,3	0
140	80	12,1	0
150	30	18,8	0
150	50	17,6	0
150	60	16,8	0
150	80	14,6	0
150	90	13,2	0
160	30	21,4	0
160	50	20,2	0
160	60	19,4	0

Nem	illab	300	
	mm	kg/m	
AD	ID		
160	80	17,2	0
160	90	15,9	0
170	30	24,2	0
170	50	23,0	0
170	60	22,2	0
170	80	20,0	0
170	90	18,7	0
170	120	13,7	0
180	30	27,2	0
180	50	26,0	0
180	60	25,2	0
180	80	22,9	0
180	90	21,6	0
180	120	16,6	0
190	30	30,3	0
190	50	29,1	0
190	60	28,3	0
190	80	26,1	0
190	90	24,8	0
190	120	19,8	0
190	140	15,6	0
200	30	33,6	0
200	50	32,4	0
200	60	31,6	0
200	80	29,4	0
200	90	28,1	0
200	120	23,1	0
200	140	18,9	0

Nennmaß

LINNOTAM DRIVE

Das Antriebswunder

LINNOTAM DRIVE 30 – 31

 $\rho = 1,03 \, g/cm^3$

LiNNOTAM DRIVE 612 Fe und 1200 Fe Rundstäbe mit metallischem Kern

612 Fe				
Nennmaß	Stahlkern 9SMn28 (1.0715)			
Ø in mm	in mm			
115	45	0		
120	50	0		
125	50	0		
130	55	0		
135	60	0		
140	60	0		
145	60	0		
150	70	0		
155	70	0		
160	80	0		
165	80	0		
170	90	0		
180	90	0		
190	100	0		
200	110	0		
210	120	0		
220	130	0		
230	140	0		
240	150	0		
255	160	0		
280	180	0		
305	200	0		
335	220	0		
375	250	0		

Nennmaß	Stahlkern 9SMn28 (1.0715)	
Øin mm	in mm	
50	20	0
50	30	0
60	30	0
70	40	0
80	30	0
80	40	0
90	40	0
90	50	0
100	40	0
100	50	0
110	40	0
110	50	0
110	60	0
120	50	0
120	60	0
120	70	0
130	60	0
130	70	0
130	80	0
140	60	
140	70	0
140	80	0
150	60	0
150	60	0
150	70	0
150	80	0
160	70	0
160	80	0
170	80	0
170	90	
170	100	0
180	80	
180	90	
180	100	0
190		0
190	90	0
190	100	0
200	80	0
200	45	0
200	90	0
200	100	0

1200 Fe

PA 6 E 32 – 33

 $\rho = 1,13 \, g/cm^3$

PA 6 E Platten

Stärke	Toleranz	2.000 × 1.000		
in mm	in mm	kg/m		
1	-0,1/+0,1	1,1	0	_
	-0,15/+0,15	2,3	0	0
3	-0,2/+0,2	3,5	0	0
4	-0,2/+0,2	4,7	0	0
5	+0,2/+0,7	5,9	0	0
6		7,0	0	0
8	+0,2/+1,1	10,7	0	
10		13,2	0	
12	+0,3/+1,5	16,3	0	
15		19,9	0	
20		26,0	0	
25		32,0	0	
30	+0,5/+2,5	38,1	0	
35		45,3	0	
40		51,4	0	
50		63,5	0	
60	+0,5/+3,5	76,8	0	
70		88,9	0	
80	+0,5/+5,0	100,9	_ 0	
100		124,5	0	

 ρ = 1,13 g/cm³

PA 6 E Rundstäbe

Nennmaß	Toleranz	3.00	3.000			1.000		
 ⊘in mm	in mm	kg/m			kg/m			
6	+0,1/+0,6	0,04	0	0	0,04	0		
8	+0,1/+0,7	0,07	0	0	0,07	0		
10		0,10	0	0	0,10	0		
12	+0,2/+0,8	0,15	0	0	0,15	0		
15		0,23	0	0	0,23	0		
16		0,26	0		0,26	0		
18		0,33	0		0,33	0		
20		0,40	0	0	0,40	0		
22	+0,2/+1,0	0,49	0		0,49	0		
25		0,62	0	0	0,62	0		
30		0,88	0	0	0,88	0		
35	+0,2/+1,2	1,2	0	0	1,2	0		
40		1,5	0	0	1,5	0		
45	+0,3/+1,3	1,9	0	0	1,9	0		
50		2,4	0	0	2,4	0		
55		2,9	0	0	2,9	0		
60	+0,3/+1,6	3,5	0	0	3,5	0		
65		4,0	0	0	4,0	0		
70		4,7	0	0	4,7	0		
75	+0,4/+2,0	5,4	0	0	5,4	0		
80		6,2	0	0	6,2	0		
85	+0,5/+2,2	6,9		0	6,9	0		
90		7,8	0	0	7,8	0		
95	+0,6/+2,5				8,6	0		
100		9,6	0	0	9,6	0		
110	+0,7/+3,0	11,7	0	0	11,7	0		
120	+0,8/+3,5	14,0	0	0	14,0	0		
125		15,2	0		15,2	0		
130	+0,9/+3,8	16,4	0	0	16,4	0		
140		19,0	0	0	19,0	0		
150	+1,0/+4,2	21,7	0	0	21,7	0		
160	+1,1/+4,5	24,8	0	0	24,8	0		
170	+1,2/+5,0	28,0	_ 0	0	28,0	0		
180		31,5	0	0	31,5	0		
190	+1,3/+5,5	35,0	0	0	35,0	0		
200		38,8		0	38,8	0		
250	+1,5/+6,2				60,5	0		
280	+1,5/+6,6				75,5	0		
300	+1,5/+7,5	86,7	0		86,7	0		

PA6E 34–35

 ρ = 1,13 g/cm³

PA 6 E Hohlstäbe

Nennma	аВ	Tole	ranz	3.00	00	
Ø in mr	m	inr	mm	kg/m		
AD	ID	AD	ID			
25	12	+0,4/+1,1	-0,4/-1,1	0,50	0	0
25	15			0,41	0	0
30	15	+0,6/+2,0	-0,6/-2,0	0,68	0	0
35	15			1,0	0	0
35	20			0,95	0	0
40	20			1,2	0	0
40	25			1,0	0	0
40	30			0,81	0	0
45	20			1,6	0	0
45	25			1,4	0	0
50	20			2,1	0	0
50	25			1,9	0	0
50	30			1,7	0	0
50	35			1,4	0	0
55	30	+0,8/+2,5	-0,8/-2,5	2,1	0	0
60	35			2,5	0	0
60	40			2,2	0	0
60	50			1,4	0	0
70	50	+0,8/+3,0	-0,8/-3,0	2,6	0	0
80	30			5,4	0	0
80	50			4,1	0	0
90	40	+1,2/+3,6	-1,6/-5,0	6,4	0	0
90	60			4,7	0	0
100	60			6,6	0	0
100	70			5,4	0	0
125	80	+1,5/+4,5	-2,0/-6,5	10,0	0	0

 ρ = 1,14 g/cm³

PA 66 Platten

Stärke	Toleranz	3.000 × 610	2.000 × 1.000	
in mm	in mm	kg/m	kg/m	
1			1,1 O	
2			2,3 O	
3			3,8 O	
4			4,8 O	
5	+0,2/+0,7		6,3 O	
6			7,5 O	
8	+0,2/+1,1	6,5 O		
10		8,0 O		
12	+0,3/+1,5	9,9 O		
15		12,1 O		
20		15,8 O		
25				
30	+0,5/+2,5	23,2 O		
35		27,6 O		
40		31,3 O		
50		38,7 O		
55	+0,5/+3,5	42,9 O		
60		46,8 O		

PA 66 und PA 66-GF 36 – 37

 ρ = 1,14 g/cm³ | ρ = 1,35 g/cm³

PA 66 und PA 66-GF Rundstäbe

	PA 66		
Nennmaß	Toleranz	3.000	
Ø in mm	in mm	kg/m	
6	+0,1/+0,6	0,04	0
8	+0,1/+0,7	0,07	0
10		0,10	0
12	+0,2/+0,8	0,15	0
15		0,23	0
16		0,26	0
18	- 	0,33	0
20		0,40	0
25	+0,2/+1,0	0,62	0
28		0,77	0
30		0,88	0
35	+0,2/+1,2	1,2	0
40		1,5	0
45	+0,3/+1,3	1,9	0
50		2,4	0
55		2,9	0
60	+0,3/+1,6	3,5	0
65		4,0	0
70	-	4,7	0
75	+0,4/+2,0	5,4	0
80		6,2	0
85	+0,5/+2,2	6,9	0
90		7,8	0
100	+0,6/+2,5	9,6	0
110	+0,7/+3,0	11,7	0
120	+0,8/+3,5	14,0	0
130	+0,9/+3,8	16,4	0
140		19,0	0
150	+1,0/+4,2	21,7	0

	PA	66-GF						
Nennmaß	Toleranz	3.000		1.000				
Ø in mm	in mm	kg/m		kg/m				
10	+0,1/+0,7	0,12	0	0,12	0			
12	+0,2/+0,8	0,17	0	0,17	0			
15		0,27	0	0,27	0			
20		0,47	0	0,47	0			
25	+0,2/+1,0	0,73	0	0,73	0			
30		1,0	0	1,0	0			
40	+0,2/+1,2	1,8	0	1,8	0			
50	+0,3/+1,3	2,8	0	2,8	0			
60	+0,3/+1,6	4,1	0	4,1	0			
70	+0,4/+2,0	5,5	0	5,5	0			
80		7,2	0	7,2	0			
100	+0,5/+2,2	11,3	0	11,3	0			
120	+0,8/+3,5	16,4	0	16,4	0			
150	+1,0/+4,2	25,5	0	25,5	0			

 ρ = 1,41 g/cm³

POM-C Platten

Stärke	Toleranz	3.000 × 1.2	220	3.000×	610		2.000 ×	610		2.000 ×	1.000	
in mm	in mm	kg/m		kg/m			kg/m	_		kg/m		
1	-0,1/+0,1									1,5	0	0
2	-0,15/+0,15									2,9	0	0
3	-0,2/+0,2								_	4,5	0	0
4										6,0	0	0
5	+0,2/+0,7									7,5	0	0
6										8,9	0	0
8	+0,2/+1,1	16,2	0	7,8	0	0	7,8	0	0	13,1	0	0
10	-	19,8	0	9,4	0	0	9,4	0	0	16,0	0	0
12	+0,3/+1,5	24,6	0	12,0	0	0	12,0	0	0	19,0	0	0
15		30,1	0	14,5	0	0	14,5	0	0	23,7	0	0
20		39,2	0	18,6	0	0	18,6	0	0	31,1	0	0
25		48,3	0	23,6	0	0	23,6	0	0	39,0	0	0
30	+0,5/+2,5	57,4	0	27,9	0	0	27,9	0	0	46,3	0	0
35		68,4	0	33,4	0	0	33,4	0	0	55,1	0	0
40	-	77,5	0	37,8	0	0	37,8	0	0	62,3	0	0
45		86,6	0	42,4	0	0	42,4	0	0	71,5	0	0
50		95,7	0	46,8	0	0	46,8	0	0	77,5	0	0
60	+0,5/+3,5	115,8	0	56,5	0	0	56,5	0	0	92,0	0	0
70	_	131,9	0	66,0	0	0	66,0	0	0	104,0	0	0
80	+0,5/+5,0	149,8	0	74,0	0	0	74,0	0	0	120,0	0	0
90		169,6	0	84,8	0	0	84,8	0	0	138,0	0	0
100	-	189,3	0	95,0	0	0	95,0	0	0	154,0	0	0
110	+0,5/+6,0	207,3	0	103,7	0	0	103,7	0	0			
125	_	235,1	0	117,4	0	0	117,4	0	0			
150	+0,5/+7,0		0	140,0			140,0	0	0			

POM-C 38 – 39

 ρ = 1,41 g/cm³

POM-C Rundstäbe

Nennmaß	Toleranz	3.	000		1.	000	
Ø in mm	in mm	kg/m			kg/m		
6	+0,1/+0,6	0,05	0	0			
8	+0,1/+0,7	0,08	0	0	0,08	0	0
10		0,12	0	0	0,12	0	0
12	+0,2/+0,8	0,18	0	0	0,18	0	0
15		0,27	0	0	0,27	0	0
16		0,32	0	0			
18		0,40	0	0	0,40	0	0
20		0,47	0	0	0,47	0	0
22	+0,2/+1,0	0,57	0	0	0,57	0	0
25		0,74	0	0	0,74	0	0
28		0,93	0	0	0,93	0	0
30		1,0	0	0	1,0	0	0
32	+0,2/+1,2	1,2	0	0	1,2	0	0
35		1,4	0	0	1,4	0	0
40		1,9	0	0	1,9	0	0
45	+0,3/+1,3	2,4	0	0	2,4	0	0
50		2,9	0	0	2,9	0	0
55		3,5	0	0	3,5	0	0
60	+0,3/+1,6	4,2	0	0	4,2	0	0
65		5,0	0	0	5,0	0	0
70		5,7	0	0	5,7	0	0
75	+0,4/+2,0	6,6	0	0	6,6	0	0
80		7,5	0	0	7,5	0	0
85	+0,5/+2,2	8,5	0	0	8,5	0	0
90		9,4	0	0	9,4	0	0

Nennmaß	Toleranz	3.0	3.000			1.000				
Ø in mm	in mm	kg/m				kg/m				
95	+0,6/+2,5	10,8	0	0		10,8	0	0		
100		11,6	0	0		11,6	0	0		
110	+0,7/+3,0	14,4	0	0		14,4	0	0		
120	+0,8/+3,5	17,0	0	0		17,0	0	0		
125		18,7	0	0		18,7	0	0		
130	+0,9/+3,8	20,1	0	0		20,1	0	0		
140		22,9	0	0		22,9	0	0		
150	+1,0/+4,2	26,6	0	0		26,6	0	0		
160	+1,1/+4,5	30,5	0	0		30,5	0	0		
170	+1,2/+5,0	34,6	0	0		34,6	0	0		
180		38,8	0	0		38,8	0	0		
190	+1,3/+5,5	43,6	0	0		43,6	0	0		
200		47,7	0	0		47,7	0	0		
210	+1,3/+5,8	52,2	0	0		52,2	0	0		
220		57,0	0	0		57,0	0	0		
230	+1,5/+6,2	62,4	0	0		62,4	0	0		
250		74,6	0	0		74,6	0	0		
260	+1,5/+6,6	80,9	0	0		80,9	0	0		
280		93,9	0	0		93,9	0	0		
300	+1,5/+7,5	107,0	0	0		107,0	0	0		
310						116,0	0	0		
350	+1,5/+8,5	147,0	0			147,0	0	0		
400	+1,5/+9,5	191,2	0	0		191,2	0	0		
450	+1,5/+10,5					243,1	0	0		
500	+1,5/+11,5	298,8	0			298,8	0	0		

 ρ = 1,41 g/cm³

POM-C Hohlstäbe

Nenr	nmaß	Tole	eranz	3.00	00	1.000	
Øin	ımm	in r	mm	kg/m		kg/m	
AD	ID	AD	ID				
25	15	+0,4/+1,1	-0,4/-1,1	0,55	0 0	0,55	0
30	15		<u> </u>	0,92	0 0	0,92	0
	20	-		0,70	0 0	0,70	0
35	15	+0,6/+2,0	-0,6/-2,0	1,3	0 0	1,3	0
	20			1,1	0 0	1,1	0
	25	-		0,93	0 0	0,93	0
40	20			1,5	0 0	1,5	0
	25	-		1,4	0 0	1,4	0
	30			1,1	0 0	1,1	0
45	20	•		2,0	0 0	2,0	0
	25			1,8	0 0	1,8	0
	30		-	1,5	0 0	1,5	0
50	20			2,6	0 0	2,6	0
	25			2,4	0 0	2,4	0
	30	-		2,1	0 0	2,1	0
	35	·		1,8	0 0	1,8	0
55	30	+0,8/+2,5	-0,8/-2,5	2,8	0 0	2,8	0
	35	-		2,4	0 0	2,4	0
60	30			3,4	0 0	3,4	0
	35			3,1	0 0	3,1	0
	40			2,7	0 0	2,7	0
	50	-		1,8	0 0	1,8	0
65	30	+0,8/+3,0	-0,8/-3,0	4,2	0 0	4,2	0
70	30			5,0	0 0	5,0	0
	50			3,4	0 0	3,4	0
80	40			6,1	0 0	6,1	0
	50			5,2	0 0	5,2	_ 0
	60			4,1	0 0	4,1	_ 0
90	40	+1,2/+3,6	-1,6/-5,0	8,1	0 0	8,1	0
	50			7,1	0 0	7,1	_ 0
	60			6,1	0 0	6,1	0
	70			4,8	0 0	4,8	_
100	40			10,3	0 0	10,3	0
	50			9,5	0 0	9,5	
	60			8,2	0 0	8,2	
	70	-		6,9	0 0	6,9	0
	80			5,5	0 0	5,5	
110	50			12,0	0 0	12,0	
	60	-		12,0	0 0	12,0	
	80			7,8	0 0	7,8	
	90			5,9	0 0	5,9	0

POM-C 40 – 41

Ner	nnmaß	Tole	ranz	3.00	00		1.000	
Ø	in mm	in r	nm	kg/m			kg/m	
AD	ID	AD	ID			_		
120	60	+1,5/+4,5	-2,0/-6,5	13,6	0	0	13,6	0
	80			10,5	0	0	10,5	0
	100			6,6	0	0	6,6	0
125	80			12,0	0	0	12,0	0
130	100	+1,5/+4,5	-2,0/-6,5	9,5	0	0	0,55	0
	110			7,1	0	0	0,92	0
140	100			12,8	0	0	0,70	0
	110			10,7	0	0	1,3	0
150	80			20,3	0	0	1,1	0
	100			16,3	0	0	0,93	0
170	100	+1,8/+5,4	-2,2/-7,5	23,7	0	0	1,5	0
	130			16,5	0	0	1,4	0
180	100			27,9	0	0	1,1	0
	140			18,2	0	0	2,0	0
	160			11,1	0	0	1,8	0
210	160	+2,0/+6,0	-2,5/-8,5	24,7	0	0	1,5	0

 ρ = 1,36 g/cm³ | ρ = 1,39 g/cm³

PET und PET-GL Platten

			Р	ET			PET-GL	
Stärke	Toleranz	2.000 × 1.0	000	3.000	× 610		2.000 × 61	10
in mm	in mm		_	kg/m			kg/m	-
8	+0,2/+1,1	13,2	0	7,6	0	0	7,6	
10		16,1	0	9,4	0	0	9,4	0
12	+0,3/+1,5	20,0	0	11,4	0	0	11,4	0
15		24,5	0	14,0	0	0	14,0	0
20		31,9	0	18,4	0	0	18,4	0
25		39,3	0	22,8	0	0	22,8	0
30	+0,5/+2,5	46,8	0	22,7	0	0	22,7	0
35		55,7	0				32,1	0
40		63,1	0	36,5	0	0	36,5	0
45								
50		78,0	0	45,3	0	0	45,3	0
60	+0,5/+3,5	94,3	0	54,6	0	0	54,6	0
70				63,4	0	0	63,4	0
80	+0,5/+5,0			72,8	0	0	72,8	0
90				81,6	0	0	81,6	0
100				90,4		0	90,4	0

PET und PET-GL 42 – 43

 $\rho = 1.36 \, \text{g/cm}^3 \, \mid \, \rho = 1.39 \, \text{g/cm}^3$

PET und PET-GL Rundstäbe

				PET				PET-C	GL	
Nennmaß	Toleranz	3.00	00		1.000		3.000		1.000	
ø in mm	in mm	kg/m			kg/m		kg/m		kg/m	
10	+0,1/+0,7	0,12	0	0			0,12	0		
12	+0,2/+0,8	0,17	0	0			0,18	0		
16		0,30	0	0			0,31	0		
18	<u> </u>	0,38	0	0			0,38	0		
20		0,47	0	0			0,48	0		
25	+0,2/+1,0	0,73	0	0			0,73	0		
30	-	1,0	0	0	1,0	0	1,1	0	1,1	0
35	+0,2/+1,2	1,5	0	0	1,5	0	1,5	0		
40		1,8	0	0	1,8	0	1,9	0	1,9	0
45	+0,3/+1,3	2,3	0	0			2,4	0		
50		2,9	0	0	2,9	0	2,9	0	2,9	0
55	-	3,6	0	0			3,6	0		
60	+0,3/+1,6	4,1	0	0	4,1	0	4,2	0	4,2	0
65		4,8	0	0			4,9	0		
70		5,6	0	0	5,6	0	5,7	0	5,7	0
75	+0,4/+2,0	6,4	0	0			6,4	0		
80		7,3	0	0	7,3	0	7,5	0	7,5	0
85	+0,5/+2,2	8,3	0	0			8,3	0		
90		9,2	0	0	9,2	0	9,4	0	9,4	0
100	+0,6/+2,5	11,4	0	0	11,4	0	11,7	0	11,7	0
110	+0,7/+3,0	13,9	0	0	13,9	0	14,2	0		
120	+0,8/+3,5	16,5	0	0			16,9	0		
130	+0,9/+3,8	19,4	0	0	19,4	0	19,8	0	19,8	0
140	+1,0/+4,2	22,5	0	0			22,9	0	22,9	0
150	+1,1/+4,5	25,8	0	0	25,8	0	26,0	0	26,0	0
160					29,4	0				
180	+1,2/+5,0				37,1	0				
200	+1,3/+5,5				45,8	0				

Vom Halbzeug zum maßgeschneiderten

Bauteil

Spanabhebende Bearbeitung	S. 45 – 46
Kennwerte für die einzelnen Bearbeitungsverfahren	S. 46 – 47
Tabelle	S. 48 – 49
Nachbehandlungsverfahren	S. 50
Tempern	S. 51

Bearbeitung und Nachbehandlung 44 – 45

Spanabhebende Bearbeitung

Mit der zunehmenden Vielfalt an technischen Kunststoffen und den daraus resultierenden Einsatzmöglichkeiten öffnen sich für den Konstrukteur neue Horizonte, die ihm mit den üblichen Werkstoffen verschlossen blieben. Oft ist, neben den Werkstoffgrenzen, nur das Herstellverfahren als Grenze der gestalterischen Möglichkeiten zu sehen. Insbesondere dann, wenn großvolumige Konstruktionsteile aus Guss-Polyamiden und Polyacetal (POM) oder Polyethylenterephthalat (PET) benötigt werden, können Herstellverfahren, wie z. B. Spritzguss, nicht eingesetzt werden. Dies gilt ebenso für komplexe Funktionsträger, die eine allseitige Bearbeitung mit engen Toleranzen erfordern.

Hier hat sich die spanabhebende Herstellung als vorteilhaft erwiesen: Sowohl hochpräzise Funktionsträger als auch großvolumige Konstruktionsteile lassen sich in kleinen und mittleren Losgrößen besonders wirtschaftlich durch spanabhebende Bearbeitung herstellen.

Für die Herstellung von qualitativ hochwertigen Produkten sind bei der Auswahl von Maschinen und Werkzeugen sowie deren Einsatz einige spezifische Eigenschaften der Kunststoffe zu berücksichtigen.

Bearbeitungsmaschinen/-werkzeuge

Für die spanabhebende Bearbeitung sind keine besonderen Maschinen oder Verfahren notwendig. Es können die in der Holzund Metallbearbeitung üblichen Maschinen mit Werkzeugen aus HSS (Hochleistungs-Schnellschnittstahl) oder Hartmetall-Werkzeuge verwendet werden. Lediglich für die Bearbeitung der Kunststoffe mit der Kreissäge empfiehlt sich grundsätzlich der Einsatz von hartmetallbestückten Sägeblättern.

Eine Besonderheit stellt die Gruppe der glasfaserverstärkten Kunststoffe dar. Eine Bearbeitung mit hartmetallbestückten Werkzeugen ist zwar möglich, jedoch können aufgrund der niedrigen Standzeiten der Werkzeuge nur schwer wirtschaftliche Ergebnisse erzielt werden. Hier empfiehlt sich die Verwendung von beschichteten Hartmetall-Werkzeugen, die zwar wesentlich teurer als herkömmliche Werkzeuge sind, aber erheblich längere Standzeiten aufweisen.

Abb. 1: komplexes Funktionsteil aus POM

Bearbeiten, Spannen und Maßhaltigkeit des Werkstücks

Kunststoffe haben im Vergleich zu metallischen Werkstoffen ein schlechtes Wärmeleitvermögen sowie einen niedrigen E-Modul. Durch unsachgemäße Bearbeitung kann es zu starker Erwärmung des Werkstücks und damit zu großer, wärmebedingter Ausdehnung kommen. Auch herstellbedingte Spannungen im Halbzeug können durch Zerspanungswärme frei werden. Hohe Spanndrücke und stumpfe Werkzeuge erzeugen Verformungen des Werkstücks während der Bearbeitung. Maß- und Formabweichungen über den Toleranzbereich hinaus sind die Konsequenz. Zufriedenstellende Arbeitsergebnisse können also nur erzielt werden, wenn bei der Zerspanung von Kunststoffen einige werkstoffspezifische Richtlinien beachtet werden.

Im Einzelnen bedeutet das:

- Es sollte spannungsarm getempertes Halbzeug verwendet werden.
- Es sollten möglichst hohe Schnittgeschwindigkeiten angestrebt werden.
- Eine optimale Spanabfuhr muss gewährleistet sein, damit ein Einziehen der Späne durch das Werkzeug vermieden wird.
- Die verwendeten Werkzeuge müssen absolut scharf geschliffene Schneiden aufweisen. Stumpfe Schneiden können zu starker Erwärmung führen, was Verzug und Wärmedehnung zur Folge haben kann.
- Es muss auf allseitig gleichmäßige Spanabnahme geachtet werden, um Verzug zu vermeiden.
- Die Spanndrücke dürfen nicht zu hoch sein, da sonst Deformationen des Werkstücks und Abdrücke der Spannwerkzeuge im Werkstück die Folge sind.
- Aufgrund der geringen Steifigkeit muss das Werkstück auf dem Maschinentisch ausreichend unterstützt werden und möglichst vollflächig aufliegen.
- Einwandfreie, hochwertige Oberflächen lassen sich nur durch vibrationsarmen Maschinenlauf realisieren.

Als besonders schwierig stellt sich die Herstellung von maßhaltigen Teilen, die ein hohes Zerspanungsvolumen oder eine ungleichmäßige Spanabnahme erfordern, dar. In beiden Fällen empfiehlt es sich, die Teile bis auf ein Restaufmaß vorzuarbeiten und dann zwischenzutempern. Das und eine anschließende 24-stündige Zwischenlagerung gewährleisten, dass zerspanungsbedingte Wärmespannungen und Restspannungen des Halbzeugs weitgehend abgebaut werden. Danach können die Teile endbearbeitet werden. Unter Beachtung dieser Richtlinien sind auch enge, kunststoffgerechte Toleranzen mit hoher Wiederholgenauigkeit ohne Schwierigkeiten realisierbar.

Spanabhebende Bearbeitung

Kühlung während der Bearbeitung

Im Allgemeinen ist eine Kühlung während der Bearbeitung nicht unbedingt notwendig. Soll gekühlt werden, empfiehlt sich die Verwendung von Pressluft. Diese hat den Vorteil, dass neben dem Kühleffekt gleichzeitig der Span aus dem Arbeitsbereich entfernt wird und ein Einziehen des Spans in bzw. ein Umlaufen des Spans um das Werkzeug verhindert wird.

Handelsübliche Bohremulsionen und Schneidöle können ebenfalls zur Kühlung verwendet werden. Der Einsatz empfiehlt sich besonders dann, wenn tiefe Bohrungen eingebracht oder Gewinde geschnitten werden sollen. Außerdem lassen sich höhere Vorschübe und damit geringere Laufzeiten erzielen. Zu beachten ist jedoch, dass einige Kunststoffe von Bestandteilen der Bohremulsionen und Schneidöle angegriffen und irreversibel geschädigt werden können.

Vor deren Verwendung empfiehlt sich daher, die Beständigkeit des Kunststoffs zu prüfen. Alternativ dazu können die Emulsionsoder Ölhersteller Informationen und Hinweise über bekannte Unverträglichkeiten mit Kunststoffen geben. Mit Emulsion oder Schneidöl benetzte Werkstücke sollten darüber hinaus nach der Bearbeitung sorgfältig gereinigt werden. Es ist darauf zu achten, eventuell anhaftende Rückstände restlos zu entfernten. So wird gewährleistet, dass etwaige Folgearbeitsgänge, wie z. B. Verkleben oder Lackieren, problemlos bleiben. Speziell bei Polyamiden wird verhindert, dass die Wasseranteile in der Emulsion zu Veränderungen der Bauteile durch Feuchteaufnahme führen.

Kennwerte für die einzelnen Bearbeitungsverfahren

Sägen

Kunststoffe können gleichermaßen mit einer Band- oder Kreissäge gesägt werden. Die Auswahl richtet sich nach der Form des Halbzeugs. Der Einsatz einer Bandsäge bietet sich insbesondere bei Verwendung einer "Auflagekehle" (Prisma) für den Zuschnitt von Vollstäben und Rohren an und bringt den Vorteil, dass die entstehende Barbeitungswärme durch das lange Sägeblatt gut abgeführt wird. Es muss jedoch auf eine ausreichende Schränkung des Blattes geachtet werden, damit ein Klemmen des Blattes verhindert wird.

Kreissägen kommen hingegen hauptsächlich für den Zuschnitt von Tafeln und Blöcken mit geraden Schnittkanten in Betracht. Hierbei ist zu beachten, dass mit ausreichenden Vorschüben gearbeitet wird, damit die Spanabfuhr gewährleistet ist und ein Klemmen des Sägeblatts sowie eine Überhitzung des Kunststoffs im Sägeschnitt verhindert wird. Tabelle 1 enthält Richtwerte für die Schneidengeometrie der Sägeblätter.

Fräsen

Die Fräsbearbeitung auf den üblichen Bearbeitungszentren ist unproblematisch. Mit hohen Schnittgeschwindigkeiten und unter mittleren Vorschüben lassen sich hohe Zerspanleistungen bei gleichzeitig guter Oberflächenqualität und Genauigkeit erzielen. Es ist darauf zu achten, dass Werkzeuge mit ausreichend großem Spanraum verwendet werden. Damit ist eine zuverlässige Spanabfuhr gewährleistet und es wird ein Wärmestau vermieden. Hinsichtlich der Schneidengeometrie empfehlen wir die in der Tabelle enthaltenen Werte.

Drehen

Da bei den meisten Kunststoffen ein Fließspan entsteht, ist auf eine besonders gute Abfuhr der Späne zu achten, da sich diese sonst einklemmen und mit dem Drehteil umlaufen. Des Weiteren ist aufgrund der geringeren Steifigkeit der Kunststoffe bei längeren Teilen die Gefahr des Durchhangs groß und deshalb die Verwendung einer Lünette ratsam. Für die Schneidengeometrie gelten die Werte der Tabelle.

Bohren

Bohrungen können mit einem handelsüblichen HSS-Bohrer hergestellt werden. Bei der Herstellung von tiefen Bohrungen ist darauf zu achten, dass für eine gute Spanabfuhr gesorgt ist, da es sonst an der Bohrungswand zur Erwärmung des Kunststoffs bis zur Schmelztemperatur kommen kann und der Bohrer "schmiert". Dies gilt insbesondere für tiefe Bohrungen. Für Bohrungen in dünnwandigen Werkstücken empfiehlt sich die Wahl einer hohen Schnittgeschwindigkeit und ggf. eines neutralen (0°) Spanwinkels. So wird ein Einhaken des Bohrers in das Werkstück und das damit verbundene Ausreißen der Bohrung bzw. Hochziehen des Werkstücks am Bohrer vermieden. In der Tabelle sind die empfohlenen Werte für die Bohrerschneidengeometrie dargestellt.

Bohren großer Durchmesser in Rundstababschnitten

Beim Bohren entstehen an den Bohrerschneiden, speziell bei hochkristallinen Werkstoffen wie LiNNOTAM, hohe Temperaturen, die aufgrund der guten Isoliereigenschaften der Kunststoffe nicht ausreichend abgeführt werden können. Die Wärme führt zu einer inneren Dehnung des Werkstoffs, was Druckspannungen im Inneren des Stababschnitts hervorruft. Diese können so hoch werden, dass es zum Reißen und Auseinanderplatzen des Rohlings kommt. Dies kann durch werkstoffgerechte Bearbeitung weitgehend vermieden werden.

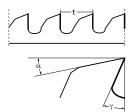
Es empfiehlt sich, eine Vorbohrung anzubringen und die Fertigbearbeitung mit einem Innendrehmeißel auszuführen. Vorbohrungen sollten dabei im Durchmesser nicht größer als 35 mm sein. Bohrungen in langen Stababschnitten dürfen dabei nur von einer Seite her eingebracht werden, da sich sonst beim Aufeinandertreffen der Bohrungen in der Mitte des Rohlings ein ungünstiges Spannungsverhältnis ergibt, welches das Reißen des Stababschnitts begünstigt. In extremen Fällen kann es notwendig sein, den Rohling auf ca. 120-150 °C zu erwärmen und die Vorbohrung in diesem Zustand anzubringen. Die Fertigbearbeitung kann dann nach dem vollständigen Abkühlen und Erreichen eines gleichmäßigen Temperaturniveaus innerhalb des Rohlings erfolgen.

Hinweise zu verstärkten und gefüllten Kunststoffen

Kunststoffe, die durch Glasfasern, Kohlefasern, Glaskugeln, Mineralstoffe oder andere Stoffe verstärkt oder gefüllt sind, weisen gegenüber nicht verstärkten oder ungefüllten Kunststoffen ein höheres Restspannungsniveau auf. Durch die Verstärkungs- und Füllstoffe werden die Produkte zudem härter und spröder und die Schlagzähigkeit nimmt ab. Das macht diese Produkte besonders rissempfindlich. Während der Zerspanung können die Restspannungen freigesetzt werden, was sich durch starken Verzug bis zur Rissbildung und vollständigem Bruch bemerkbar machen kann.

Bei der Be- und Verarbeitung sollten daher folgende Hinweise berücksichtigt werden:

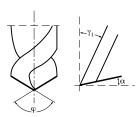
- Es sollte spannungsarm getempertes Halbzeug verwendet werden.
- Es sollten möglichst hohe Schnittgeschwindigkeiten angestrebt werden.
- Eine optimale Spanabfuhr muss gewährleistet sein, damit ein Einziehen der Späne durch das Werkzeug vermieden wird.


Werden die vorstehenden Bearbeitungsrichtlinien beachtet, ist die Herstellung komplexer Produkte aus technischen Kunststoffen mit spangebenden Verfahren auch bei höchsten Qualitätsanforderungen an Genauigkeit und Funktionalität ohne Weiteres möglich.

Halbzeuge

Tabelle

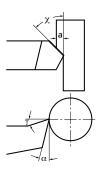
Sägen


 α = Freiwinkel (°) γ = Spanwinkel (°) ν = Schnittgeschw. (m/min)

t = Freiwinkel

Werte für Kreissäge ohne () Werte für Bandsäge mit ()

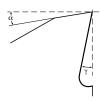
Geschränkte Bandsägeblätter verwenden!


Bohren

 α = Freiwinkel (°) γ = Spanwinkel (°) φ = Spitzenwinkel (°) v = Schnittgeschw. (m/min) s = Vorschub (mm/U)

Der Drallwinkel des Bohrers soll 12-16° betragen.

Drehen


 α = Freiwinkel (°) γ = Spanwinkel (°) ξ = Einstellwinkel (°) ν = Schnittgeschw. (m/min)

s = Vorschub (mm/U)

a = Spanntiefe (mm)

Der Spitzenradius soll 0,5 mm betragen.

Fräsen

 α = Freiwinkel (°) γ = Spanwinkel (°) ν = Schnittgeschw. (m/min)

Vorschub bis 0,5 mm pro Zahn, Drallwinkel des Fräsers von 0-40°.

Legende

- Keine Kühlschmierstoffe/Schneidöle verwenden. Spannungsrissgefahr!
- Verwendung von Hartmetall/Diamantwerkzeugen empfohlen
- Halbzeug auf ca. 120 °C vorwärmen! Richtwert für Aufwärmzeit: 5-6 min/mm Querschnitt

Bearbeitung und Nachbehandlung 48 – 49

	PA	РОМ	PET	PE/PP-H	PVC	PVDF	PTFE	PSU	PEI	PEEK	verstärkte Werkstoffe
α	30 – 40 (10 – 20)	30 – 40 (10 – 20)	30 – 40 (10 – 20)	20 – 30 (20 – 30)	5 – 10 (30 – 40)	30 – 40 (10 – 20)	10 – 15 (10 – 30)	10 – 15 (10 – 30)	10 – 15 (15 – 30)	10 – 15 (15 – 30)	15 – 30 (15 – 30)
γ	0 – 10 (0 – 8)	0 – 10 (0 – 8)	0 – 10 (0 – 8)	6 – 10 (2 – 8)	0 – 6 (0 – 5)	0 - 10 (0 - 8)	0 – 15 (0 – 4)	0 – 15 (0 – 4)	10 – 15 (15 – 30)	0 – 15 (0 – 5)	15 – 30 (10 – 15)
v	1.000 – 3.500 (200 – 1.000)	1.000 – 3.500 (200 – 1.000)	1.000 – 3.500 (200 – 1.000)	1.000 – 3.500 (500 – 800)	3.000 – 4.000 (800 – 1.200)	1.000 – 3.500 (200 – 1.000)	1.800 – 2.000 (300 – 500)	1.800 – 2.000 (300 – 500)	1.800 – 2.000 (300 – 500)	1.800 – 2.500 (500 – 800)	500 – 1.500 (200 – 300)
t	24 – 80 (3 – 5 / Zoll)	24 – 80 (3 – 5 / Zoll)	24 – 80 (3 – 5 / Zoll)	24 – 80 (3 – 8 / Zoll)	36 – 80 (3 – 5 / Zoll)	24 – 80 (3 – 5 / Zoll)	24 – 80 (2 – 5 / Zoll)	24 – 80 (2 – 5 / Zoll)	24 – 80 (2 – 5 / Zoll)	24 – 80 (3 – 5 / Zoll)	24 – 80 (3 – 5/Zoll)
α	5-15	5-10	5 – 10	10 – 20	5-10	5-15	10-15	8 – 15	8-15	5-15	5-10
γ	5-10	5 – 15	5-15	10-15	0-5	5 – 20	5 – 20	10 – 20	10-20	10 – 15	5-10
φ	60 – 90	60 – 90	60 – 90	60 – 90	60 – 100	110 – 130	110 – 130	60 – 90	60 – 90	90 – 120	110-120
v	50 – 150	50 – 150	50 – 150	50 – 150	30 – 120	100 – 300	100 – 300	50 – 100	50 – 100	50 – 200	80-100
s	0,1 – 0,5	0,1-0,3	0,1 – 0,3	0,1-0,5	0,1 - 0,5	0,1-0,3	0,1-0,3	0,1-0,4	0,1 – 0,4	0,05 - 0,3	0,1-0,3
α	5-15	5-10	5-10	5-10	8-10	5-15	5-10	5-10	5-10	5-10	6-8
γ	0-10	0-5	0-5	0-5	0-5	5-15	0-5	0-5	0-5	0-5	2-8
χ	0 – 45	0 – 45	0 – 45	0 – 60	30 – 60	0 – 45	0 – 45	0 – 45	0 – 45	0 – 45	45 – 60
v	200 – 500	200 – 500	200 – 500	250 – 500	250 – 750	150 – 200	200 – 500	150 – 400	150 – 400	200 – 500	150 – 200
s 	0,05 – 0,5	0,05 – 0,5	0,05 – 0,5	0,1-0,5	0,3 – 0,5	0,1-0,3	0,05 – 0,5	0,1-0,3	0,1-0,3	0,2 – 0,5	0,1 – 0,5
a 	bis 15	bis 15	bis 15	bis 15	bis 10	bis 15	bis 15	bis 10	bis 10	bis 15	bis 10
α	5-15	5-10	5-10	5 – 20	5-10	5-15	10-15	10 – 20	10-20	5-15	15-30
γ	0-15	0-10	0-10	5-15	0-15	5-15	15 – 20	5-15	5-15	5-10	5-10
v	bis 1.000	bis 1.000	bis 1.000	bis 1.000	bis 1.000	bis 1.000	bis 600	bis 400	bis 400	bis 500	bis 100

Hinweise für die Zerspanung

Für folgendes Abmessungen/Werkstoffe empfehlen wir das Erwärmen vor dem Sägen:

ab Ø 50: PA 66 GF ab Ø 60: PEEK-GF, PEEK-GL, POM-GF ab Ø 100: PA 6 GF, PA 12 GF, PET Für folgendes Abmessungen/Werkstoffe empfehlen wir das Erwärmen vor dem Bohren im Zentrum:

ab \oslash 60: PEEK-GF, PEEK-GL, POM-GF

ab Ø 80: PA 66 GF

ab Ø 100: PA 66, PA 6 GF, PA 12 GF, PET

ab Ø 180: Linnotam, Linnotam Hiperformance 612, Linnotam Hiperformance 1200

Nachbehandlungsverfahren

Konditionieren

Der Prozess des Konditionierens wird als Nachbehandlung trockener Polyamidprodukte mit dem Ziel der möglichst schnellen Feuchtigkeitsanreicherung definiert. Dies kann dann erforderlich sein, wenn Bauteile aus Polyamiden sich durch Wasseraufnahme maßlich nicht mehr verändern dürfen, Teile im dauernden Kontakt mit oder unter Wasser eingesetzt werden sollen oder gezielt die durch Wasseraufnahme hervorgerufene Werkstoffveränderungen herbeigeführt werden sollen.

Üblicherweise werden bei Polyamidprodukten folgende Feuchtigkeitszustände unterschieden:

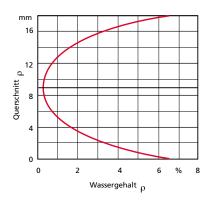
- trocken (Feuchtegehalt < 0,2%)
- luftfeucht (Gewichtskonstanz bei Lagerung im Normklima bei 23°C/50 % rel. Feuchte)
- nass (Gewichtskonstanz auch nach längerer Wasserlagerung)

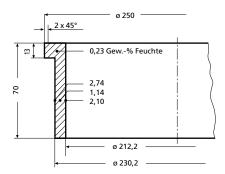
Für die Konditionierung bietet sich, neben den mit Warmluft und Luftfeuchte arbeitenden Verfahren, die Lagerung in heißem Wasser (Wassertemperatur ca. 80 °C-max. 100 °C) an. Diese Methode ist vom Aufwand her gesehen die einfachste, birgt jedoch einen entscheidenden Nachteil: Bei dickwandigen Bauteilen diffundiert das Wasser zunächst in die Oberflächenregionen ein und sättigt diese. Die tieferliegenden Schichten weisen jedoch nach Ablauf der Konditionierzeit noch nicht den gewünschten Wassergehalt auf. Nach Entnahme der Teile aus dem Wasserbad wird ein Teil des Wassers wieder an die Umgebung abgegeben. Der Wassergehalt der oberflächennahen Schichten stellt sich bei dem gewünschten Wert ein, der der tieferliegenden Schichten sinkt jedoch unter den vorgesehenen Wert. Daher ist es zweckmäßig, die Verweilzeit der Bauteile im Wasserbad etwas zu verlängern und der Konditionierung eine Lagerung in normaler Raumluft von einigen Tagen Dauer anzuschließen. So stellt sich nach Abgabe des Wassers aus den oberflächennahen Schichten ein über den Querschnitt annähernd gleichmäßiger Wassergehalt ein.

Wichtige Faktoren bei der Wasseraufnahme von Polyamiden

Der Vorgang der Wasseraufnahme läuft im allgemeinen nur sehr langsam ab und wird von verschiedenen Faktoren beeinflusst. Die wichtigsten Faktoren lassen sich dabei wie folgt darstellen:

1. Geschwindigkeit der Wasseraufnahme


Wasser bzw. Feuchtigkeit wird von Polyamid nur sehr langsam bis zu einem Gleichgewichtszustand aufgenommen. Ist das Gleichgewicht erreicht, lässt sich der Feuchtegehalt nur durch Änderung der Umgebungsbedingungen, wie z. B. höherer Feuchtegehalt und/oder höhere Temperatur beeinflussen. Die Neigung der Wassermoleküle, in einen Feststoff einzudiffundieren, nimmt dabei mit steigender Temperatur stark zu. Demzufolge wird mit zunehmender Umgebungstemperatur weniger Zeit benötigt, um eine bestimmte Menge Wasser in ein Bauteil aus Polyamid eindringen zu lassen. Darüber hinaus ist die Größe der spezifischen Oberfläche (Oberfläche pro Volumeneinheit) entscheidend. Je größer die spezifische Oberfläche des Bauteils ist, desto größer ist die Angriffsfläche für die Wassermoleküle und umso höher die Auf-


nahmegeschwindigkeit. Für den praktischen Einsatz von Polyamiden lässt sich daraus schließen, dass kurzfristige Feuchtigkeitsschwankungen in der Umgebung nur geringen Einfluss auf die Werkstoffeigenschaften haben, langfristige und ggf. mit hohen Temperaturen einhergehende Schwankungen jedoch durchaus die beschriebenen Veränderungen der Werkstoffeigenschaften hervorrufen können.

2. Wasseraufnahme in Luft

Die Wasseraufnahme durch Luftfeuchtigkeit wird im Wesentlichen von der relativen Luftfeuchte und nicht der Lufttemperatur bestimmt. Für die Wasseraufnahme durch Luftfeuchtigkeit ist anzumerken, dass sich der Vorgang bei dickwandigen Bauteilen ausschließlich im oberflächennahen Bereich abspielt und eine Wasseraufnahme im Bauteilinneren mit den geschilderten Folgen im Normalfall nicht zu erwarten ist (Abb. 2).

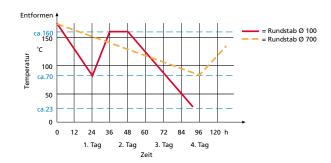
Abb. 2: Feuchteverteilung in dickwandigen Bauteilen aus Guss-Polyamid

3. Einfluss des Kristallinitätsgrades

Da Wasser nur von den amorphen Anteilen im Polyamid aufgenommen wird, hängt die Wasseraufnahme auch wesentlich vom Kristallinitätsgrad ab. Mit steigendem Kristallinitätsgrad nimmt sowohl die Sättigungskonzentration (hängt vom chemischen Aufbau und der Polyamidart ab) als auch die Aufnahmegeschwindigkeit und das Aufnahmevermögen ab. Gegossene Polyamide haben im Vergleich zu extrudierten Polyamiden einen höheren Kristallinitätsgrad. Sie nehmen daher erheblich weniger Wasser auf und benötigen dafür wesentlich mehr Zeit.

Bearbeitung und Nachbehandlung 50 – 51

Tempern


Der Vorgang des Temperns wird als Wärmebehandlung von Formteilen oder Halbzeugen definiert, der das Ziel hat,

- Restspannungen aus dem Herstell- oder Verarbeitungsprozess weitgehend zu reduzieren
- die Kristallinität zu steigern und damit die mechanischen Werkstoffkennwerte zu verbessern
- Verzug und Maßänderungen während oder nach der Verarbeitung zu verhindern
- die dauerhafte Dimensionsstabilität zu verbessern

Üblicherweise werden Halbzeuge und Formteile im Wärmeschrank mit heißer, zirkulierender Luft getempert. Häufig werden aber auch heiße Ölbäder auf Parafin- oder Silikonölbasis eingesetzt. Unabhängig vom verwendeten Wärmeübertragungsmedium basiert der Ablauf des Verfahrens auf einem einheitlichen Schema: Die Produkte werden im Wärmeschrank (im Medium) langsam und gleichmäßig auf die werkstoffspezifische Temper-Temperatur aufgeheizt. Ist diese erreicht, müssen die Produkte über mehrere Stunden auf dieser Temperatur gehalten werden. Eine vollständige Durchwärmung der Produkte ist dabei für den Tempererfolg maßgeblich und entscheidend. Die erforderliche Haltezeit ist von der Produktmasse und -form sowie den Maßen abhängig und wird daher an diesen Parametern ausgerichtet. Nach Ablauf der Haltezeit muss darauf geachtet werden, dass das Tempergut langsam, zugfrei und kontrolliert auf Raumtemperatur abkühlt. So ist gewährleistet, dass sich ein hochkristallines Gefüge im Werkstoff bildet und nur geringe Restspannungen durch ungleichmäßige Wärmeverluste in der Abkühlphase entstehen.

Der Temperaturbereich der gängigen technischen Kunststoffe liegt im Allgemeinen zwischen 130°C und 170°C. Einige Werkstoffe (z.B. die Hochtemperatur-Kunststoffe) erfordern höhere Temperaturen.

Aber auch technische Kunststoffe können in besonderen Fällen bei höheren Temperaturen getempert werden. Dabei sind jedoch spezielle Verfahrensbedingungen einzuhalten, und es muss darauf geachtet werden, dass die maximale Temperatur stets 30 bis 40 °C unterhalb des Schmelzpunktes liegt. Hinsichtlich der erforderlichen Aufheiz-, Halte- und Abkühlzeiten ist eine pauschale Angabe der benötigten Zeiten nur bedingt möglich. Die Abhängigkeiten von Produktmasse und -form sowie den Maßen des Tempergutes sind sehr groß. Beispielsweise haben große Massen einen wesentlich höheren Wärme- und Zeitbedarf bis zur vollständigen und gleichmäßigen Durchwärmung als kleine Massen. Gleichzeitig benötigen sie erheblich längere Abkühlzeiten, da die eingebrachte Wärmemenge aufgrund der großen Masse nur langsam wieder abgegeben wird. Im nachfolgenden Diagramm werden diese Unterschiede am Beispiel von gießfrischen Vollstäben aus LiNNOTAM verdeutlicht.

Es wird erkennbar, dass ein Vollstab mit Ø 100 mm bereits einen Tag nach dem Entformen soweit abgekühlt ist, dass er getempert werden kann. Dagegen benötigt ein Vollstab mit Ø 700 mm mindestens vier Tage, bis er soweit abgekühlt ist, dass mit dem Temperprozess begonnen werden kann.

Aber auch die Produktform hat einen nicht unbedeutenden Einfluss auf die Temperzeiten: Rohre werden zum Beispiel schneller vollständig durchwärmt als Vollstäbe, da sie aufgrund von Innenund Außendurchmesser eine größere Oberfläche zur Wärmeaufnahme bieten. Dementsprechend kühlen diese nach dem Tempern auch schneller wieder ab als Vollstäbe.

Sollen Teile während der Fertigung zwischengetempert werden, sind neben den oben beschriebenen Parametern auch die geometrischen Verhältnisse des Konstruktionsteils sowie die vorhandenen Wandstärken und deren Verteilung am Werkstück zu berücksichtigen.

Unter Beachtung der vorangegangenen Ausführungen können folgende Daten als grobe Richtwerte verwendet werden:

Werkstoff	Temperatur in °C	Aufheizen in°C/Std.	Haltezeit in min/mm	Abkühlen in°C/Std.
Polyamid (PA):	ca. 160-165	ca. 10-15	ca. 5-6	ca. 15-20
Polyacetal (POM):	ca. 150-152	ca. 10-15	ca. 5-6	ca. 15-20
Polyethylenterephthalat (PET):	ca. 170-175	ca. 10-15	ca. 5-6	ca. 15-20
Polyetheretherketon (PEEK):	ca. 220-225	ca. 10-15	— ca. 5-6	ca. 15-20

Genauere Daten für die Temperung unserer Produkte erhalten Sie auf Anfrage.

Physikalische Werkstoffrichtwerte

Eigenschaften, die

den Unterschied

ausmachen

Alle Kenngrößen auf einen Blick - Viele wesentliche Kunststoffe im direkten Vergleich. Machen Sie sich anhand in der Praxis ermittelten Werkstoffrichtwerte unserer Materialien ein Bild von der Leistungsfähigkeit unserer Produkte und vergleichen Sie sie mit vielen Standardwerten üblicher Kunststoffe.

Hinweise und Bedingungen für die Tabelle S. 53

Tabelle "Physikalische Werkstoffrichtwerte"

S. 54 – 55

Physikalische Werkstoffrichtwerte 52 – 53

Hinweise und Bedingungen für die Tabelle

Die Angaben aus der Liste sollen einen Überblick über die Eigenschaften unserer Produkte verschaffen und einen schnellen Werkstoffvergleich ermöglichen. Sie geben den heutigen Stand unserer Kenntnisse wieder und erheben keinen Anspruch auf Vollständigkeit. Aufgrund der starken Abhängigkeit von Umgebungseinflüssen und Bearbeitung sind die genannten Werte nur als Richtwerte zu verstehen. Sie stellen in keinem Fall eine rechtlich verbindliche Zusicherung bezüglich der Eigenschaften unserer Produkte oder deren Eignung zur Anwendung in einem konkreten Einsatzfall dar. Alle genannten Werte wurden als Durchschnittswert aus vielen Einzelmessungen ermittelt und beziehen sich auf eine Temperatur von 23 °C und 50 % RF. Für den spezifizierten Anwendungsfall empfehlen wir den Eignungsnachweis durch einen praktischen Versuch.

Die Bedingungen, unter denen die einzelnen Werte ermittelt wurden, bzw. die Merkmale zu den einzelnen Werten, sind in der folgenden Liste mit den entsprechenden Fußnoten gekennzeichnet:

Kennwert	Bedingung	Fußnote
Schlagzähigkeit DIN EN ISO 179	gemessen mit Pendelschlagwerk 0,1 DIN 51 222	1
Zeitdehnspannung DIN 53 444	Spannung, die nach 1.000 h zu 1 % Gesamtdehnung führt	2
Gleitreibungskoeffizient	gegen Stahl gehärtet und geschliffen, $P = 0.05$ MPa, $V = 0.6$ m/s, $t = 60$ °C in Laufflächennähe	3
Linearer Längenausdehnungskoeffizient	für den Temperaturbereich von + 23 °C bis + 60 °C	4
Temperatureinsatzbereich	Erfahrungswerte, ermittelt an Fertigteilen ohne Belastung in erwärmter Luft, abhängig von Art und Form der Wärmeeinwirkung, kurzzeitig = max. 1 h, langzeitig = Monate	5
Dielektrizitätszahl IEC 250	bei 10 ⁶ Hz	6
Farben	POM-C natur = weiß	7
	PET-natur = weiß	
	PVDF-natur = weiß bis elfenbein (transluzent)	
	PE-natur = weiß	
	PP-H natur = weiß (transluzent)	
	PP-H grau ≈ RAL 7032	
	PVC-grau ≈ RAL 7011	
	PEEK natur ≈ RAL 7032	
	PSU-natur = honiggelb (transluzent)	
	PEI-natur = amber (transluzent)	
Einheiten und Abkürzungen	o. B. = ohne Bruch	ohne
	$1 \text{ MPa} = 1 \text{ N/mm}^2$	
	$1 \text{ g/cm}^3 = 1.000 \text{ kg/m}^3$	
	1 kV/mm = 1 MV/m	

					Mechanische Werte											
Nr.	Produkt	Werk- stoff	Farbe (standard)	Probe- körper- zustand	Dichte DIN EN ISO 1183	Streckspannung DIN EN ISO 527	Reißdehnung DIN EN ISO 527	E-Modul (Zug) DIN EN ISO 527	E-Modul (Biegung) DIN EN ISO 178	Biegefestigkeit DIN EN ISO 178	Schlagzähigkeit DIN EN ISO 179	Kerbschlagzähigkeit DIN EN ISO 179	Kugeldruckhärte H ₃₈₈₃₀ DIN EN ISO 2039-1	Zeitdehnspannung 1% Dehnung DIN EN ISO 899-1	Gleitreibungskoef- fizient gegen Stahl (Trockenlauf) ®	Gleitverschleiß gegen Stahl (Trockenlauf) ³।
					$\frac{1}{\rho}$ g/cm ³	2 σ_{zs} MPa	3 ε _{zR} %	4 E _t MPa	5 Е _{вз} МРа	6 _{Фьв} МРа	7 a _{cU} kJ/m²	8 a _{cN} kJ/m²	9 H _k MPa	10 σ _{1/1.000} MPa	11 µ -	12 V μm/km
1	Linnotam	PA 6 C	natur/ schwarz/ blau	trocken/ luftfeucht	1,15	80/60	40/100	3.100/1.800	3.400/2.000	140/60	o. B.	> 4/> 15	160/125	> 7	0,36/0,42	0,10
2	LINNOTAM MoS	PA 6 C + MoS ₂	schwarz	trocken/ luftfeucht	1,15	85/60	40/100	3.200/1.850	3.300/2.000	130/50	o. B.	> 5/> 15	150/115	> 7	0,32/0,37	0,10
3	LINNOTAMHS	PA 6 C-WS	schwarz	trocken/ luftfeucht	1,15	90/60	30/80	2.500/2.000	3.000/2.300	120/40	o. B.	> 4/> 12	170/130	> 7	0,36/0,42	0,10
4	LINNOTAM GLIDE	PA 6 C + Öl	natur/ schwarz/ gelb/ grün/rot	trocken/ luftfeucht	1,14	80/55	50/120	2.800/1.700	3.000/1.900	135/55	o. B.	> 5/> 15	150/100	>7	0,15/0,20	0,03
5	LiNNOTAM GLIDE Pro T	PA 6 C + Fest- schmier- stoff	grau/rot/ grün	trocken/ luftfeucht	1,14	80/60	40/100	3.100/1.800	3.300/2.000	110/60	o. B.	> 4/> 15	160/125	>7	0,15/0,23	0,03
6	LiNNOTAM DRIVE 600 Fe	PA 6 C + Schlag- zähmodi- fiziert	-	trocken/ luftfeucht	1,15	90	20	2.800	2.500	160/130	o. B.	> 15	175	> 7	0,36/0,42	-
7	LINNOTAM HIPERFORMANCE 612	PA 6/12 C	natur	trocken/ luftfeucht	1,12	80/55	55/120	2.500/1.500	2.800/1.800	135/55	o. B.	> 12	140/100	> 15	0,36/0,42	0,12
8	LINNOTAM HIPERFORMANCE 1200	PA12C	natur	trocken	1,03	60/50	55/120	2.200/1.800	2.400	90	o. B.	> 15	100	> 11	0,4	
9	LINNOTAM HIPERFORMANCE HPI	PA 6 C + Schlag- zähmodi- fiziert	hellgelb	trocken/ luftfeucht	1,15	90/70	40/100	3.000/1.900	3.100/2.200	130/60	o. B./ –	> 8/-	145/120	>7	0,36/0,42	_
10	Polyamid 6	PA 6	natur/ schwarz	trocken/ luftfeucht	1,14	70/45	50/180	2.700/1.800	2.500/1.400	130/40	o. B.	> 3/o. B.	160/70	> 8	0,38/0,42	0,23
11	Polyamid 66	PA 66	natur/ schwarz	trocken/ luftfeucht	1,14	85/65	30/150	3.000/1.900	2.900/1.200	135/60	o. B.	> 3/> 15	170/100	> 8	0,35/0,42	0,1
12	Polyamid 66 + Glasfaser	PA 66 GF 30	schwarz	trocken	1,35	160	3	11.000		_	50	6	240/200	40	0,45/0,5	_
13	Polyamid 12	PA 12	natur	trocken	1,02	50	>200	1.800	1.500	60	o. B.	> 15	100	> 4	0,32	0,8
14	Polyacetal Copolymer	POM-C	natur ^{7)/} schwarz	trocken	1,41	65	40	3.000	2.900	115	o. B.	> 10	150	13	0,32	8,9
15	Polyacetal Copolymer Glasfaser	POM-C GF 30	schwarz	trocken	1,59	125	3	9.300	9.000	150	30	5	210	40	0,50	-
16	Polyethylenterephthalat	PET	natur ⁷⁾ / schwarz	trocken	1,38	80	40	3.000	2.600	125	82	14	140	13	0,25	0,35
17	Polyethylenterephthalat + Gleitzusatz	PET-GL	hellgrau	trocken	1,38	75	5	2.230	_	_	23	10	_	-	0,2	0,1
18	Polytetrafluorethylen	PTFE	natur	trocken	2,18	25	380	750	540	6	o. B.	16	30	1,5	0,08	21,0
19	Polyvinylidenfluorid	PVDF	natur ⁷⁾	trocken	1,78	56	22	2.000	2.000	75	o. B.	> 15	120	3	0,3	_
20	Polyethylen 1000	PE- UHMW	natur ⁷⁾ / schwarz/ grün	trocken	0,94	22	350	800	800	27	o. B.	o. B.	40	_	0,29	0,45
21	Polypropylen Homopolymer	PP-H	natur ⁷⁾ / grau ⁷⁾	trocken	0,91	32	70	1.400	1.400	45	o. B.	7	70	4	0,35	11,0
22	Polyvinylchlorid	PVC-U	grau ⁷⁾ / schwarz/ rot/weiß	trocken	1,42	58	15	3.000	_	82	o. B.	4	130	_	0,6	56,0
23	Polyetheretherketon	PEEK	natur ⁷⁾ / schwarz	trocken	1,32	95	45	3.600	4.100	160	o. B.	7	230	_	0,34	-
24	Polyetheretherketon (modifiziert)	PEEK-GL	schwarz	trocken	1,48	118	2	8.100	10.000	210	25	2,5	215		0,11	_
25	Polysulfon	PSU	natur ⁷⁾	trocken	1,24	75	>50	2.500	2.700	106	o. B.	4	150	22	0,4	
26	Polyetherimid	PEI	natur ⁷⁾	trocken	1,27	105	>50	3.100	3.300	145	o.B.	-	165	-	-	-

Physikalische Werkstoffrichtwerte 54 – 55

		The	rmische W	Verte						Elektrisch	sonstige Daten					
Schmelztemperatur DIN EN ISO 3146	Wärmeleitfähigkeit DIN 52 612	Spezifische Wärmekapazität	inearer Ausdehnungs- koeffizient ⁴⁾	Temperatureinsatz- bereich (langzeit) গ	Temperaturein satz- bereich (kurzzeit) গ	Brandverhalten nach UL 94 IEC 60695	Dielektrizitätszahl 👨 IEC 60250	Dielektrischer Verlustfaktor ⁶⁾	Spezifischer Durch- gangswiderstand IEC 60093	Oberflächenwider- stand IEC 60093	Durchschlagfestigkeit IEC 60243	Kriechstromfestigkeit IEC 60112	Feuchteaufnahme im NK DIN EN ISO 62	Wasseraufnahme DIN EN ISO 62	Spezielle Eigenschaften	
13 T _m ℃	14 λ W/(K⋅m)	15 c J/(g·K)	16 α 10 ⁻⁵ ·K ⁻¹	17 - °C	18 - ℃	19 - -	20 ε _R –	21 tan δ –	$\begin{array}{c} 22 \\ \rho_{\text{D}} \\ \Omega \cdot \text{cm} \end{array}$	23 R° Ω	24 E _d kV/mm	25 - -	26 w(H ₂ O) %	27 W _s %		
+220	0,23	1,7	7-8	-40 bis +105	+170	НВ	3,7	0,03	1015/1012	1013/1012	50/20	CTI 600	2,2	6,5	hart, druck- und abriebfest, größte Abmessungen herstellbar	
+220	0,23	1,7	7-8	-40 bis +105	+160	НВ	3,7	0,03	1015/1012	1013/1012	50/20	CTI 600	2,2	6,5	wie PA 6 C , jedoch erhöhte Kristallinität	
+220	0,23	1,7	7-8	-40 bis +105	+180	НВ	3,7	0,03	1015/1012	1013/1012	50/20	CTI 600	2,2	7	wie PA 6 C , jedoch wärmealterungsstabilisiert	
+220	0,23	1,7	7-8	-40 bis +105	+160	НВ	3,7	0,03	1015/1012	1013/1012	50/20	CTI 600	1,8	5,5	hohe Abriebfestigkeit, niedrige Gleitreibung	
+220	0,23	1,7	7-8	-40 bis +105	+160	НВ	3,7	0,03	1015/1012	1013/1012	50/20	CTI 600	2,2	6,5	geringer Stick-Slip, sehr niedrige Gleitreibung	
+225	0,23	1,7	7-8	-40 bis +105	+160	НВ	3,7	0,03	1015/1012	1013/1012	50/20	CTI 600	1,9	5,8	hohe Schlag- und Stoßfestigkeit, mit Stahlkern	
+220	0,23	1,7	7-8	-40 bis +105	+160	НВ	3,7	0,03	1015	1013	50/20	KA3c	1,9	5,8	wie PA 6 C, jedoch hoch schlagzäh eingestellt	
+190	0,23	1,7	10-11	-60 bis +110	+150	НВ	3,7	0,03	1015	1013	50/20	CTI 600	0,9	1,4	niedrige Wasseraufnahme, sehr gute Zeitstandfestigkeit	
+225	0,23	1,7	7-8	-40 bis +105	+160	НВ	3,7/–	0,03/–	1015/1012	1013/1012	50/20	CTI 600	1,9	5,8	wie PA 6 C, jedoch erhöhte Kristallinität und Schlag-/Stoßfestigkeit	
+218	0,23	1,7	8-9	-30 bis +100	+140	НВ	7,0	0,3	1015/1012	1013/1010	50/20	CTI 600	3,0	10,0	zäh, gute Schwingungsdämpfung	
+265	0,23	1,7	9-10	-30 bis +100	+150	НВ	5,0	0,2	1015/1012	1012/1010	50/20	CTI 600	2,5	9,0	hohe Abriebfestigkeit (ähnlich wie PA 6 C)	
+255	0,3	1,5	2-3	-30 bis +120	+180	НВ	3,7	0,02	1014/1013	1013/1012	60/30	CTI 475	1,5	5,5	hohe Festigkeit, niedrige Wärmeausdehnung	
+178	0,30	2,09	11-12	-70 bis +70	+140	НВ	3,1	0,03	2 x 10 ¹⁵	1013	30	CTI 600	0,8	1,5	zäh, hydrolysebeständig, geringe Feuchteaufnahme	
+168	0,31	1,45	9-10	-30 bis +100	+140	НВ	3,9	0,003	1015	1013	20	CTI 600	0,2	0,8	hohe Festigkeit, schlagfest, geringe Kriechneigung	
+168	0,40	1,21	3-4	-30 bis +110	+140	НВ	4,8	0,005	1015	1013	65	KA 3C/ KC > 600	0,17	0,6	hohe Festigkeit, niedrige Wärmeausdehnung	
+255	0,24	1,1	7-8	-20 bis +100	+160	НВ	3,6	0,008	1016	1014	50	CTI 600	0,25	0,5	zäh, hart, geringer Kaltfluss, dimensionsstabil	
+245	0,23	_	6-7	-20 bis +110	+160	НВ	3,6	0,008	1016	1014	_	CTI 600	0,2	0,5	wie PET, zusätzlich höchste Verschleißfestigkeit	
+327	0,23	1	18-20	-200 bis +260	+280	V-0	2,1	0,0005	1018	1017	40	CTI 600	0,01	< 0,01	hohe Chemikalienbeständigkeit, geringe Festigkeit	
+178	0,19	0,96	13	-40 bis +140	+160	V-0	8,0	0,165	5 x 10 ¹⁴	1013	25	CTI 600	< 0,04	< 0,04	Beständigkeit gegen UV-, Beta- und Gammastrahlung, abriebfest	
+133	0,38	1,84	18	-260 bis +50	+80	HB	3,0	0,0004	> 1016	1014	44	CM 600	0,01	< 0,01	wie PE-HMW, jedoch abriebfester, niedriger Reibwert	
+162	0,22	1,7	16	0 bis +80	+100	HB	2,25	0,00033	> 1016	1014	52	CM 600	< 0,01	< 0,01	ähnlich wie PE-HD, jedoch höhere Wärmefestigkeit	
_	0,156	1,05	8	0 bis +50	+70	V-0	3,3	0,025	1016	1013	39	KA 3b	< 0,01	< 0,01	gute chemische Beständigkeit, hart und spröde	
+340	0,25	1,06	4-5	-40 bis +250	+310	V-0	3,2	0,002	1016	1016	24	CTI 150	0,2	0,45	hochtemperaturfest, hydrolysebeständig, dimensionsstabil	
+340	0,24		3	-40 bis +250	+310	V-0	3,2		105		24,5	-	0,14	0,3	wie PEEK, jedoch höherer pv-Wert, bessere Gleiteigenschaften	
_	0,26	1	5-6	-40 bis +160	+180	V-0	3,0	0,002	1017	1017	30	CTI 150	0,4	0,8	dampfsterilisierbar, hydrolysebeständig, strahlenbeständig	
_	0,22	-	5-6	-40 bis +170	+200	V-0	3,0	0,003	1018	1017	33	CTI 175	0,75	1,35	hohe Festigkeit und Steifigkeit, hohe Wärmefestigkeit	

Chemische Beständigkeit

Die verlässliche Kraft

gegen chemische

Einflüsse

Wenn es um die Widerstandskraft von Teilen und Komponenten gegen chemische Einflüsse geht, können technische Kunststoffe vielen metallischen Werkstoff überlegen sein. In der folgenden Tabelle erhalten Sie einen breiten Einblick, wie stark und beständig unsere Kunststoffe im chemisch-industriellen Umfeld ihren Dienst verrichten.

Hinweise zur Verwendung der Liste	S. 57
Tabollo, Chomischo Boständigkoit"	S 58 50

Chemische Beständigkeit 56 – 57

Hinweise zur Verwendung der Liste

Die Angaben zur chemischen Beständigkeit in der nachfolgenden Liste beziehen sich auf Versuche, in denen die Probekörper frei von äußeren Spannungen und Belastungen den jeweiligen Medien ausgesetzt waren. Hinzu kommen unsere Erfahrungen aus dem praktischen und zum Teil langjährigen Einsatz der Kunststoffe im Kontakt mit den Medien. Die vorliegende Liste stellt aufgrund der Medienvielfalt nur einen Auszug aus den uns zur Verfügung stehenden Daten dar. Sollte das von Ihnen verwendete Medium nicht darin enthalten sein, geben wir Ihnen auf Nachfrage gerne Auskunft zur Beständigkeit der von uns gelieferten Kunststoffe.

Bei der Anwendung der Liste ist zu beachten, dass Faktoren, wie z. B.:

- abweichender Reinheitsgrad des Mediums
- abweichende Konzentration des Mediums
- andere Temperaturen als die angegebenen
- Wechseltemperaturen
- mechanische Belastung
- Teilegeometrien, insbesondere solche, die zu dünnen Wandstärken oder starken Wandstärkenunterschieden führen
- Spannungen, die durch die Verarbeitung erzeugt werden
- Mischungen, die aus den verschiedenen Medien zusammengesetzt sind
- Kombinationen aus den vorstehend genannten Faktoren

die chemische Beständigkeit beeinflussen können.

Ein Teil aus Kunststoff kann, trotz der Einstufung "bedingt beständig", einem aus metallischen Komponenten bestehenden Werkstoff überlegen und wirtschaftlich sinnvoller sein.

Bei oxidierenden Medien, wie z. B. Salpetersäure und polaren organischen Lösemitteln, besteht, trotz der chemischen Beständigkeit gegen das Medium, bei vielen thermoplastischen Kunststoffen die Gefahr von Spannungsrissbildung. Für die Herstellung von Teilen, die mit solchen Medien in Kontakt kommen, ist daher ein Herstellverfahren zu wählen, das möglichst wenige mechanische Spannungen im Werkstück erzeugt. Eine Alternative bildet der Abbau der Spannungen durch Temperung der Halbzeuge bzw. Halbfertigprodukte vor und während der Fertigung des Produkts.

Für Gemische aus verschiedenen Medien kann die Beständigkeit in der Regel nicht vorhergesagt werden, auch wenn der Kunststoff gegen die einzelnen Bestandteile des Gemischs beständig ist. Daher empfehlen wir für diesen Fall einen Einlagerungsversuch mit dem entsprechenden Mischmedium unter den zu erwartenden Umgebungsbedingungen. Dabei ist zu beachten, dass bei Teilen, die im Bereich des unmittelbaren Zusammentreffens zweier oder mehrerer Medien eingesetzt werden sollen, zusätzlich eine Temperaturbelastung aufgrund der entstehenden Reaktionswärme auftreten kann.

Trotz der Einstufung "beständig" kann es in verschiedenen Fällen im Kontakt mit dem Medium zu Oberflächenveränderungen, wie z. B. Mattierung oder Verfärbung, bei transparenten Kunststoffen zur Trübung kommen. Die Widerstandsfähigkeit bleibt jedoch trotz dieser Oberflächenveränderung erhalten.

Die in den Listen enthaltenen Angaben entsprechen dem derzeitigen Stand unserer Kenntnisse und sind als Empfehlung und Richtwert zu verstehen. Wir empfehlen für den konkreten Einsatzfall bzw. im Zweifel, die Beständigkeit durch einen Einlagerungsversuch unter den zu erwartenden Einsatzbedingungen zu überprüfen.

			_						_																
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
	Konzentration	atur°C	AM	Linnotamhs	Linnotammos	LINNOTAMGLIDE	LINNOTAMGLIDEProT	LINNOTAM HIPERFORMANCE HPI	OTAM HIPERFORMANCE 612	LINNOTAM HIPERFORMANCE 1200	Polyamid 6	Polyamid 66	Polyamid 12	– Polyacetal – Copolymer	Polyethylenterephthalat	– Polyethylenterephthalat/Gleitzusatz	Polytetrafluorethylen	Polyvinylidenfluorid	1W – Polyethylen 1000	Polypropylen	- Polyviny Ichlorid	Polyetheretherketon	L – Polyetheretherketon modifiziert	– Polysulfon	Polyetherimid
	zent	Temperatur	LINNOTAM	Ď	Ď	ğ	Ď	ğ	ğ	Ď	6 – Pc	99	12-1	Ϋ́	1.0	Ġ	1.0	1.0	PE-UHMW	1	- 1	1	PEEK-GL-	_ _	Poly
	Kon	Tem	Š	Ž	Ž	ž	Ž	Š	LINN	Ž	PA 6	PA 6	PA 1	POM	PET	PET	PTFE	PVDF	P.	PP-H	PVC-U	PEEK	出	PSU	<u> </u>
1 Acetaldehyd	40	20	+	+		+	+	+	+	+	+	+	+	+	+				+				+		
2 Acetamid	50	20	<u>.</u>	<u> </u>	<u>.</u>	<u>·</u>	<u>·</u>	<u> </u>	<u> </u>	<u>.</u>	<u>.</u>	<u> </u>	<u> </u>	<u>·</u>			<u> </u>	<u> </u>	<u>.</u>	<u>.</u>		<u>.</u>	+		<u> </u>
3 Aceton	. — UV	RT	·	<u> </u>	<u>.</u>	<u> </u>	<u> </u>	·	<u>.</u>	+	<u> </u>	<u> </u>	<u> </u>	<u> </u>	_		<u> </u>	<u> </u>	<u>.</u>	<u>.</u>		<u> </u>	<u>.</u>		<u> </u>
					-													-							
4 Acrylnitril	UV	RT	+	+		+	+	+	+	+	+	+	+				+		+	+		+	+		
5 Allylalkohol		RT	0	0			0	0	0	0					+					-+-			+		
6 Aluminiumchlorid	10	RT	+	+	+	+	+	+	+	+	+	+	+		+		+					+			
7 Ameisensäure		RT	0	0	0	0	0	0	0	0	0	0	0		+	+		+	+	+	+	+	+		+
8 Ameisensäure	UV	RT				_L				0	_L		0		0	0		+	+	+	+	0	0		
9 Ammoniak	10	RT	+	+	+		+	+	+	+			+					+	+	-+	+				
10 Ammoniumhydroxid		RT	+	+	+		+	+	+	+		+								+			+	+	
11 Ammoniumnitrat	UV	RT	+	+	+		+	+	+	+	+		+		+			+	+	+	+	+	+		
12 Anilin	UV	RT								0			0		+	+		+	+	0		+	+		
13 Antimontrichlorid	_10	RT	_				_	_		_					/_	/_	+	+	+	+	+	+	+	/_	
14 Benzaldehyd	UV	RT	0	0	0	_0_	0	0	0	0	_0_	_0_	0	_+	+	+	+	0	+	+		+	+		
15 Benzin (super)	HÜ	40	+	+	+	+	+	+	+	+	+	+	+	+	/_	/	+	+	0	0		+	+	0	
16 Benzol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	0	+	+	+	+	0	0	_	+	+		
17 Benzoesäure	UV	RT	-	-	-	-	-	-	-	+	-	-	+	0	+	+	+	+	+	+	+	+	+	/	/
18 Benzylalkohol	UV	RT	0	0	0	0	0	0	0	0	0	0	0	+	+	+	+	+	+	+		+	+	0	_
19 Bleichlauge (12,5 % AC)	ΗÜ	RT	_	_	_	_	_	_	_	0	_	_	0	_	+	+	+	+	+	+	+	+	+		+
20 Borax	WL	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+		
21 Borsäure	10	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
22 Bromwasserstoffsäure	10	RT	_	_	_	_	_	_	_	_	_	_	_	_	0	_	+	+	+	+	+	+	+	+	
23 Bromwasserstoffsäure	50	RT	_	_	_	_	_	_	_	_	_	_	_	_	_	_	+	+	+	+	+	0	0		
24 Butanol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	+
25 Butylacetat	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+			+	+		0
26 Calciumchlorid	5	RT	+	+	+	+	+	+	+	+	+	+	+	0	+	+	+	+	+	+	+	+	+	0	+
27 Calciumchlorid in Alkohol	20	RT	_	_	_	_	_	_	_	_			_	_	+	+	+	+	+	+		+	+	0	+
28 Calciumhypochlorid	GL	RT	_	_				_	_	_		_	_		0	0	+	+	+	+	+	+	+		
29 Chlorbenzol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	0		+	+		
30 Chloressigsäure	UV	RT	_	_	_		_	_	_	_	_	_					+	+	+	+		+	+		
31 Chloroform	UV	RT	0	0	0	0	0	0	0	0	<u> </u>	0	0	_			+	+	<u> </u>	0		+	+		_
32 Chromsäure	1	RT	0	0	0	0	0	0	0	0	0	0	0	0	+	+	+	+	+	+	+	+	+	0	+
33 Chromsäure	50	RT	_						_	_					+	+	+	+	0	0	+	+	+	0	
34 Cyclohexan	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	
35 Cyclohexanol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	-	
36 Cyclohexanon	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+			+		+	+	+	+	+		
37 Dibutylphtalat	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	0			+	+	+	0
38 Dichlorethan	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+		_	+	-	_ 0	<u> </u>	<u> </u>	+	+	L	
39 Dichlorethylen	UV	RT	+	+	+	+	+	+	+	+	+	+					+	+		_ 0		+	+		
40 Eisen(II)chlorid	GL	RT	_						_					<u>-</u>			+	+	+	-	+	+	+		+
41 Eisen(III)chlorid	GL	RT		_	_	_	_	_	_	_	_	_		-			+	+	+	+	+	+	+	_	+
	HÜ	RT	_							+				-	+		-		+	-	+	+	+		
42 Essig			<u>-</u>	<u> </u>	<u> </u>	-	<u> </u>	<u> </u>	<u> </u>			<u>-</u>													
43 Essigsäure	. <u>5</u>	RT	+	-			-		-	+	-	-	+	-	+	+	+	+	+	+	+	+	+	+	+
44 Essigsäure	10	RT	0		0																				+
45 Essigsäure	10	50	_				_	_		0				_			+	+	+	-	+	+	+	+	
46 Essigsäure	95	RT	_				_	_								_	+	+		+		+	+		
47 Essigsäure	95	50	_					_								_	+	0	0	0		+	+		
48 Ethylether	UV	RT	+	+	+			+	+	+			-		+		+	+	0	0		+	+	0	
49 Flusssäure	- WL	RT															+	+	+	+	+		_ <u>L</u>		
50 Formaldehyd	UV	RT	0	0	0	0	0	0	0	0	0	0	0	+	+	+	+	+	+	+	+	+	+	_	

58 – 59 Chemische Beständigkeit

			1		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
																rusatz							ert		
	Konzentration	Temperatur °C	Linnotam	LINNOTAMHS	LINNOTAMMoS	LINNOTAMGLIDE	Linnotam glide Pro T	LINNOTAM HIPERFORMANCE HPI	LINNOTAM HIPERFORMANCE 612	LINNOTAM HIPERFORMANCE 1200	PA 6 – Polyamid 6	PA 66 – Polyamid 66	PA 12 – Polyamid 12	POM-C – Polyacetal – Copolymer	PET – Polyethylenterephthalat	PET-GL – Polyethylenterephthalat/Gleitzusatz	PTFE – Polytetrafluorethylen	PVDF – Polyvinylidenfluorid	PE-UHMW – Polyethylen 1000	PP-H – Polypropylen	PVC-U – Polyvinylchlorid	PEEK – Polyetheretherketon	PEEK-GL – Polyetheretherketon modifiziert	PSU – Polysulfon	EI – Polyetherimid
51 Glycerin	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	+
52 Heizöl	ΗÜ	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+		+	+	+	+	+	+	+
53 Heptan	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	+	+	+	0	+
54 Hexan	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	+
55 Isopropanol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	0	0	+	+	+	+	+	+	+	0	
56 Kalilauge	10	RT	+	+	+	+	+	+	+	+	+	+	+	+		_	+	+	+	+	+	+	+	0	+
57 Kalilauge	10	80	+	+	+	+	+	+	+	+	+	+	+	+	_	_	+	0	_	+	_	+	+	0	
58 Kalilauge	50	RT	0	0	0	0	0	0	0	+	0	0	+	+	_	Ξ	+	+	+	+	+	+	+	0	_
59 Ketone (aliphatisch)	UV	RT	0	0	0	0	0	0	0	0	0	0	0	+	_	_	+	_/	+	_/	_/	+	+	/	/
60 Methanol	50	RT	+	+	+	+	+	+	+	+	+	+	+	+	0	+	+	+	+	+	+	+	+	0	+
61 Methanol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	0	+	+	+	+	+	+	+	+	0	+
62 Methylenchlorid	UV	RT	_	_	_	_	_	_	_	0	_	_	0	_	_	_	+	+	0	0	L	+	+	L	L
63 Mineralöl	ΗÜ	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
64 Natriumhypochlorid	10	RT	_	_	_	_	_	_	_	_	_	_	_		0	0	+	+	+	0	+	+	+	+	
65 Natronlauge	10	RT	+	+	+	+	+	+	+	+	+	+	+	+	0	0	+	0	+	+	+	+	+	+	0
66 Natronlauge	10	80	_	_	_	_	_	_	_	_	_	_	_	+	_	_	+	0	0	+	0	+	+	+	_
67 Natronlauge	50	RT	0	0	0	0	0	0	0	0	0	0	0	+	_	_	+	0	+	+	+	+	+	+	_
68 Natronlauge	50	80	_	_	_	_	_	_	_	_	_	_	_	+	_	_	+	0	0	+	0	+	+	+	
69 Nitrobenzol	UV	RT	_	_	_	_	_	_	_	_	_		_	0	0	0	+	+	+	+		+	+	_	
70 Nitrotoluol	UV	RT	0	0	0	0	0	0	0	0	0	0	0	0	+	+	+		+	+		+	+		
71 Oxalsäure	10	RT	0	0	0	0	0	0	0	0	0	0	0		+	+	+	+	+	+	+	+	+	+	+
72 Phenol	90	RT	L	L	L	L	L	L	L	L	L	L	L		_	_	+	+	+	+	0	+	+	_	_
73 Phenol	UV	40	L	L	L	L	L	L	L	L	L	L	L	_		_	+	+	+	+	_	+	+	_	_
74 Phenol	UV	60	L	L	L	L	L	L	L	L	L	L	L				+	0			_	+	+	_	_
75 Phenol	UV	80	L	L	L	L	L	L	L	L	L	L	L			_	+	0				+	+	_	
76 Phosphorsäure	10	RT	_	_	_	_		_	_	_	_		_	+	+	+	+	+	+	+	+	+	+	+	+
77 Phosphorsäure	25	RT	_	_	_			_	_	_	_			0	+	+	+	+	+	+	+	+	+	+	+
78 Phosphorsäure	85	RT	L	L	L	L	L	L	L	L	L	L	L		+	+	+	+	+	+	+	+	+	0	
79 Propanol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
80 Salpetersäure	10	RT	_	_	_	_	_	_	_	_	_	_	_		+	+	+	+	+	+	+	+	+	+	+
81 Salpetersäure	10	60	_					_	_							_	+	+		_		+	+		
82 Salpetersäure	50	RT	L	L	L		L	L	L	L	L	L	L			_	+	+	_	_	_	0	0	+	
83 Salpetersäure	80	RT	L	L	L	L	L	L	L	L	L	L	L	_	_	_	+	0	_	_	_	0	0	+	/
84 Salzsäure	10	RT	_	_	_	_	_	_	_	_	_	_	_	_	0	0	+	+	+	+	+	+	+	+	+
85 Salzsäure	20	RT	_	_		_		_	_	_	_		_	_	0	0	+	+	+	+	+	+	+	+	+
86 Salzsäure	30	RT	L	L	L	L	L	L	L	L	L	L	L	_	_	_	+	+	+	+	+	+	+	0	+
87 Schwefelsäure	40	RT	_	_	-	_	_	_	_	_	_	_	_		0	0	+	+	+	+	+	0	0	+	+
88 Schwefelsäure	40	60	_	_	_	_	_	_	_	_	_	_	_		0	0	+	+	+	+	0	_	_	0	0
89 Schwefelsäure	96	RT	L	L	L	L	L	L	L	L	L	L	L	_		_	+	+	0	0	+	L	L	L	_
90 Schwefelsäure	96	60	L	L	L	L	L	L	L	L	L	L	L	_	_	_	+	+	_	_	0	L	L	L	_
91 Tetrachlorkohlenstoff	UV	RT	+	+	+	+	+	+	+	+	+	+	+	0	+	+	+	+	_	_	_	+	+	+	+
92 Toluol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	0	_	+	+	_	_
93 Trichlorethylen	UV	RT	0	0	0	0	0	0	0	0	0	0	0	0	0	0	+	+	0	0	_	+	+	L	_
94 Wasserstoffperoxid	10	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+
95 Wasserstoffperoxid	20	RT					_	_	_	0		_	0	+	+	+	+	+	+	+	+	+	+	+	+
96 Wasserstoffperoxid	30	RT	_	_	_	_	_	_	_	_	_	_	_	0	+	+	+	+	+	+	+	+	+	+	+
97 Wasserstoffperoxid	30	60	_	_	_	_	_	_	_	_	_	_	_	_	+	+	+		0	0	0	+	+		
98 Xylol	UV	RT	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	+	0	0	_	+	+	0	0
99 Zitronensäure	10	RT	0	0	0	0	0	0	0	+	0	0	+	+	+	+	+	+	+	+	+	+	+	0	+
100 Zitronensäure	10	50	0	0	0	0	0	0	0	0	0	0	0		+	+	+	+	+	+	+	+	+	0	+

Unsere Standorte

Deutschland

Licharz GmbH Industriepark Nord 13 53567 Buchholz/Westerwald Deutschland

T +49 2683 - 977-0 F +49 2683 - 977-111 info@licharz.com

www.licharz.com

France

Licharz Sarl. Z.I. de Leveau – Entrée G F-38200 Vienne France

T+33474318708 F+33474318707 info@licharz.fr

www.licharz.fr

Great Britain

Licharz Ltd. 34 Lanchester Way Royal Oak Industrial Estate Daventry, NN11 8PH Great Britain

T +44 1327 877 500 F +44 1327 877 333 sales@licharz.co.uk

www.licharz.co.uk

www.licharz.com